• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of forecasts in Financial Time Series using Machine Learning methods

Asokan, Mowniesh January 2022 (has links)
Forecasting financial time series is one of the most challenging problems in economics and business. Markets are highly complex due to non-linear factors in data and uncertainty. It moves up and down without any pattern. Based on historical univariate close prices from the S\&P 500, SSE, and FTSE 100 indexes, this thesis forecasts future values using two different approaches: one using a classical method, a Seasonal ARIMA model, and a hybrid ARIMA-GARCH model, while the other uses an LSTM neural network. Each method is used to perform at different forecast horizons. Experimental results have proven that the LSTM and Hybrid ARIMA-GARCH model performs better than the SARIMA model. To measure the model performance we used the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Page generated in 0.0531 seconds