• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical shear stress for erosion of fine and coarse-grained sediments in Georgia

Harris, Travis W. 07 January 2016 (has links)
Erosion of a river bed has important implications with respect to scour around river structures such as bridges, transport of contaminants attached to the sediment, and disruption or destruction of aquatic habitats. Erosion occurs when the resistive strength of the sediment is overcome by the hydrodynamic forces produced by the flow of water. This resistance to erosion in a sediment originates from gravity or interparticle forces for coarse sediment (sand and gravel) and fine sediment (silt and clay), respectively. Since the erosion of fine sediment depends on the combination of many interparticle forces, and this combination fluctuates widely amongst different fine sediments, past studies have had difficulty finding a consistent method to estimate fine sediment erosion. This study analyzes sediments that fall in the transition size range between fine and coarse sediments and compares the findings with those from fine sediments (Wang 2013) and sandy coarse sediments (Navarro 2004, Hobson 2008), in order to correlate the erosion rates of both sediment types to their physical characteristics. In this study, kaolin-sand mixtures were prepared by mixing various percentages of Georgia kaolin by weight ranging from 30% to 100% with industrial fine sand and tap water. Geotechnical and other tests of sediment properties were performed to measure water content, bulk density, grain size distribution, temperature, pH, and conductivity of these mixtures. Hydraulic flume experiments measured the erosion rates of each sediment and these rates were used to estimate the critical shear stress correlating to that mixture. Relationships between the physical properties of the sediment and critical shear stress were developed by multiple regression analysis. An alternative option of estimating the critical shear stress by a weighted equation, which uses the combination of fine sediment erosion and coarse sediment erosion equations separately, was explored and found to be a viable and accurate option to estimating both coarse and fine sediment erosion from the same parameters and equation. The results from this study can be used to estimate sediment erodibility and thus river bed stability based on simple tests of physical properties of the river bed sediment and will help predict scour around bridges and other flow obstructions.
2

Effects of physical properties and rheological characteristics on critical shear stress of fine sediments

Wang, Yung-Chieh (Becky) 08 April 2013 (has links)
During high flow rates, the acceleration of flow and turbulence around bridge foundations lead to scouring, defined as the removal of bed sediments. Due to the interparticle physico-chemical forces of clay particles, erodibility and transport mechanisms for fine sediments are different from those for coarse sediments, and the capability to predict the erosion resistance of fine sediments is still in question. In this study, silt-clay soil mixtures with different kaolin contents were prepared by mixing ground silica and Georgia kaolin with tap water. Geotechnical tests were carried out to obtain the physical properties of the specimens. The critical shear stress and yield stress of the soil mixtures were determined through hydraulic flume experiments and rheometer tests, respectively. Particle associations of the soil specimens were observed using the technique of scanning electron microscopy (SEM). From the laboratory work and data analysis, relationships among the critical shear stress, yield stress, and the soil physical properties were developed from multiple regression analysis. Specifically, values of the critical shear stress, yield stress, and their dimensionless form can be predicted by the soil properties including bulk density, clay content, and water content. Finally, a single relationship is obtained to predict the Shields parameter as a function of the corresponding dimensionless yield stress in this study. The results can be used to provide a methodology for engineering applications requiring the value of critical shear stress such as estimating fine sediment bed stability and assessing the erosion risk of river beds in proximity to bridge foundations and other flow obstructions.

Page generated in 0.0926 seconds