• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On The Big Challenges of a Small Shrub : Ecological Genetics of Salix herbacea L

Cortés, Andrés J. January 2015 (has links)
The response of plants to climate change is among the main questions in ecology and evolution. Faced with changing conditions, populations may respond by adapting, going extinct or migrating. Fine-scale environmental variation offers a unique mosaic to explore these alternatives. In this thesis, I used ecological surveys, field experiments and molecular methods to study the range of possible responses at a very local scale in the alpine dwarf willow Salix herbacea L. Since gene flow may impact the potential for adaptation and migration, I first explored whether phenological divergence driven by snowmelt patterns impacts gene flow. I found that sites with late snowmelt work as sinks of the genetic diversity, as compared to sites with early snowmelt. I also used a combined approach that looked at the selection, heritability and genomic architecture of ecologically-relevant traits, as well as genomic divergence across the snowmelt mosaic. In this way, I was able to understand which genomic regions may relate to phenological, growth and fitness traits, and which regions in the genome harbor genetic variation associated with late- and early- snowmelt sites. I found that most of the genomic divergence driven by snowmelt is novel and is localized in few regions. Also, Salix herbacea has a strong female bias. Sex bias may matter for adaptation to climate change because different sexes of many dioecious species differ in several functions that may fluctuate with changing conditions. I found that the bias is uniform across environments and is already present at seeds and seedlings. A polygenic sex determination system together with transmission distortion may be maintaining the bias. Overall, fast-evolving microhabitat-driven genomic divergence and, at the same time, genetically-based trait variation at a larger scale may play a role for the ability of S. herbacea to persist in diverse and variable conditions. / SNSF Sinergia Salix

Page generated in 0.1527 seconds