Spelling suggestions: "subject:"finestructure constant"" "subject:"minerstructure constant""
1 |
Probing variations in the fundamental constants with quasar absorption linesMurphy, Michael T., Physics, Faculty of Science, UNSW January 2002 (has links)
Precision cosmology challenges many aspects of fundamental physics. In particular, quasar absorption lines test the assumed constancy of fundamental constants over cosmological time-scales and distances. Until recently, the most reliable technique was the alkali doublet (AD) method where the measured doublet separation probes variations in the fine-structure constant, ???? e2/??c. However, the recently introduced many-multiplet (MM) method provides several advantages, including a demonstrated ???10-fold precision gain. This thesis presents detailed MM analyses of 3 independent Keck/HIRES samples containing 128 absorption systems with 0.2 > zabs > 3.7. We find 5.6 ?? statistical evidence for a smaller ?? in the absorption clouds: ????/?? = (-0.574 ?? 0.102) x 10-5. All three samples separately yield consistent, significant ????/??. The data marginally prefer constant d??/dt rather than constant ????/??. The two-point correlation function for ?? and the angular distribution of ????/?? give no evidence for spatial variations. We also analyse 21 Keck/HIRES Si iv doublets, obtaining a 3-fold relative precision gain over previous AD studies: ????/?? = (-0.5 ?? 1.3) x 10-5 for 2.0 > zabs > 3.1. Our statistical evidence for varying ?? requires careful consideration of systematic errors. Modelling demonstrates that atmospheric dispersion is potentially important. However, the quasar spectra suggest a negligible effect on ????/??. Cosmological variation in Mg isotopic abundances may affect ????/?? at zabs > 1.8. Galactic observations and theory suggest diminished 25;26Mg abundances in the low metallicity quasar absorbers. Removing 25;26Mg isotopes yields more negative ????/?? values. Overall, known systematic errors can not explain our results. We also constrain variations in y ?? ?? 2gp, comparing H i 21-cm and millimetrewave molecular absorption in 2 systems. Fitting both the H i and molecular lines yields the tightest, most reliable current constraints: ??y/y = (-0.20??0.44)x10-5 and (-0.16??0.54)x10-5 at zabs = 0.2467 and 0.6847 respectively. Possible line-ofsight velocity differences between the H i and molecular absorbing regions dominate these 1 ?? errors. A larger sample of mm/H i comparisons is required to reliably quantify this uncertainty and provide a potentially crucial check on the MM result.
|
2 |
Probing variations in the fundamental constants with quasar absorption linesMurphy, Michael T., Physics, Faculty of Science, UNSW January 2002 (has links)
Precision cosmology challenges many aspects of fundamental physics. In particular, quasar absorption lines test the assumed constancy of fundamental constants over cosmological time-scales and distances. Until recently, the most reliable technique was the alkali doublet (AD) method where the measured doublet separation probes variations in the fine-structure constant, ???? e2/??c. However, the recently introduced many-multiplet (MM) method provides several advantages, including a demonstrated ???10-fold precision gain. This thesis presents detailed MM analyses of 3 independent Keck/HIRES samples containing 128 absorption systems with 0.2 > zabs > 3.7. We find 5.6 ?? statistical evidence for a smaller ?? in the absorption clouds: ????/?? = (-0.574 ?? 0.102) x 10-5. All three samples separately yield consistent, significant ????/??. The data marginally prefer constant d??/dt rather than constant ????/??. The two-point correlation function for ?? and the angular distribution of ????/?? give no evidence for spatial variations. We also analyse 21 Keck/HIRES Si iv doublets, obtaining a 3-fold relative precision gain over previous AD studies: ????/?? = (-0.5 ?? 1.3) x 10-5 for 2.0 > zabs > 3.1. Our statistical evidence for varying ?? requires careful consideration of systematic errors. Modelling demonstrates that atmospheric dispersion is potentially important. However, the quasar spectra suggest a negligible effect on ????/??. Cosmological variation in Mg isotopic abundances may affect ????/?? at zabs > 1.8. Galactic observations and theory suggest diminished 25;26Mg abundances in the low metallicity quasar absorbers. Removing 25;26Mg isotopes yields more negative ????/?? values. Overall, known systematic errors can not explain our results. We also constrain variations in y ?? ?? 2gp, comparing H i 21-cm and millimetrewave molecular absorption in 2 systems. Fitting both the H i and molecular lines yields the tightest, most reliable current constraints: ??y/y = (-0.20??0.44)x10-5 and (-0.16??0.54)x10-5 at zabs = 0.2467 and 0.6847 respectively. Possible line-ofsight velocity differences between the H i and molecular absorbing regions dominate these 1 ?? errors. A larger sample of mm/H i comparisons is required to reliably quantify this uncertainty and provide a potentially crucial check on the MM result.
|
3 |
Probing variations in the fundamental constants with quasar absorption lines /Murphy, Michael T. January 2002 (has links)
Thesis (Ph. D.)--University of New South Wales, 2002. / Also available online.
|
4 |
Separated oscillatory field microwave measurement of the n=2 3P1 -to- n=2 3P2 fine-structure interval of helium /Borbely, Joseph S. January 2009 (has links)
Thesis (Ph.D.)--York University, 2009. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 219-222). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR51680
|
5 |
Variation of the fine structure constant in 5D Kaluza-klein theoryNg, Sui-chung., 吳瑞聰. January 2005 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
|
6 |
On the variability of the fine structure constant /Evans, Jason L. January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2004. / Includes bibliographical references (p. 87-88).
|
7 |
Variation of the fine structure constant in 5D Kaluza-klein theoryNg, Sui-chung. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
|
8 |
Precision measurement of the n=2 phosphorus-3 intervals of atomic helium : a determination of the fine-structure constant /George, Matthew Charles. January 2003 (has links)
Thesis (Ph.D.)--York University, 2003. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 124-126). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NQ99172
|
9 |
A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine StructureSmiciklas, Marc 08 1900 (has links)
Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α-1 = 137.035 999 55(64).
|
10 |
Effects of the variation of fundamental constants in atomsAngstmann, Elizabeth, Physics, Faculty of Science, UNSW January 2007 (has links)
Interest in the variation of fundamental constants has recently been stimulated by claims that the fine structure constant, α, was smaller in the past. Physicists are investigating whether α is currently varying using a number of methods including atomic clock experiments and quasar absorption spectra. To date atomic clock experiments have not reached the same level of precision as the quasar results but the precision to which transition frequencies are being measured is increasing dramatically and very soon atomic clock experiments based on Earth will be able to rival or surpass the quasar results. In order to relate the change in transition frequencies to a variation of α accurate calculations of relativistic effects in atoms and their dependence upon α are needed. Other effects, such as the small shift of transition frequencies due to blackbody radiation also need to be accounted for. In this thesis we perform accurate calculations of the dependence of transition frequencies in two-valence-electron atoms and ions on a variation of α. The relativistic Hartree-Fock method is used with many-body perturbation theory and configuration interaction methods to calculate transition frequencies. We also consider transitions with an enhanced sensitivity to α variation. In particular, narrow lines that correspond to atomic transitions between close lying, long-lived atomic states of different configurations. The small transition frequency, coupled with differences in the electron structure ensures a strong enhancement of the relative frequency change compared to a possible change in α . We also show that using the modified form of the Dirac Hamiltonian, as suggested by Bekenstein, does not affect the analysis of the quasar data pertaining to a measurement of α variation, nor does it affect atomic clock experiments. Finally we have performed calculations of the size of the frequency shift induced by a static electric field on the clock transition frequencies of the hyperfine splitting in Y b+, Rb, Cs, Ba+, and Hg+. The calculations are used to find the frequency shifts due to blackbody radiation which are needed for accurate frequency measurements and improvements of the limits on variation of α. Our result for Cs [??v/=E2 = -2:26(2) x 10-10Hz/(V/m)2] is in good agreement with early measurements and ab initio calculations. We present arguments against recent claims that the actual value might be smaller. The difference (~ 10%) is due to the continuum spectrum in the sum over intermediate states.
|
Page generated in 0.1029 seconds