• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Markerless motion capture for the hands and fingers

Majoni, Nigel January 2024 (has links)
Hand and finger movements are underrepresented in biomechanical studies, primarily due to the challenge of tracking the hands and fingers. Several limitations are associated with marker-based motion capture, including interference with natural movement, and require the tedious, time-consuming application of numerous markers. Advancements in computer vision have led to the development of markerless motion capture systems yet validation of markerless systems for the upper extremities is limited, especially the hand and fingers. The purpose of this study was to develop and assess a markerless motion capture system capable of tracking hand and finger kinematics. A markerless system using four synchronized webcams was developed. Camera pairs were organized in different angles Centre90° (C/90°), Left45°/Right45° (L45°/R45°), and Centre/Left45° (C/L45°). Motion capture was performed with both marker-based and markerless systems. Twenty healthy participants performed five dynamic hand tasks with and without markers. Three-dimensional joint positions were defined using a musculoskeletal model in OpenSim. No significant differences were observed between C/90° and C/L45° markerless camera pairs and the marker-based system. The L45°/R45° camera pair differed significantly from other markerless pairs in several tasks but agreed with the marker-based system for the index finger during flexion. For most of the fingers, no significant differences were found across the different camera pairs. Correlations and error for the concurrent finger flexion task revealed high consistency among all the camera pairs, with R² above 0.90 and RMSD below 10°, the thumb showed greater variability. The R² and RMSD varied depending on the camera comparison and finger for each task. Markerless motion capture for the hands and fingers is possible with little difference to marker-based systems and is dependent on the camera orientation used. / Thesis / Master of Science in Kinesiology

Page generated in 0.0565 seconds