• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Cohomology Ring of a Finite Abelian Group

Roberts, Collin Donald 11 January 2013 (has links)
The cohomology ring of a finite cyclic group was explicitly computed by Cartan and Eilenberg in their 1956 book on Homological Algebra. It is surprising that the cohomology ring for the next simplest example, that of a finite abelian group, has still not been treated in a systematic way. The results that we do have are combinatorial in nature and have been obtained using "brute force" computations. In this thesis we will give a systematic method for computing the cohomology ring of a finite abelian group. A major ingredient in this treatment will be the Tate resolution of a commutative ring R (with trivial group action) over the group ring RG, for some finite abelian group G. Using the Tate resolution we will be able to compute the cohomology ring for a finite cyclic group, and confirm that this computation agrees with what is known from Cartan-Eilenberg. Then we will generalize this technique to compute the cohomology ring for a finite abelian group. The presentation we will give is simpler than what is in the literature to date. We will then see that a straightforward generalization of the Tate resolution from a group ring to an arbitrary ring defined by monic polynomials will yield a method for computing the Hochschild cohomology algebra of that ring. In particular we will re-prove some results from the literature in a much more unified way than they were originally proved. We will also be able to prove some new results.
2

The Cohomology Ring of a Finite Abelian Group

Roberts, Collin Donald 11 January 2013 (has links)
The cohomology ring of a finite cyclic group was explicitly computed by Cartan and Eilenberg in their 1956 book on Homological Algebra. It is surprising that the cohomology ring for the next simplest example, that of a finite abelian group, has still not been treated in a systematic way. The results that we do have are combinatorial in nature and have been obtained using "brute force" computations. In this thesis we will give a systematic method for computing the cohomology ring of a finite abelian group. A major ingredient in this treatment will be the Tate resolution of a commutative ring R (with trivial group action) over the group ring RG, for some finite abelian group G. Using the Tate resolution we will be able to compute the cohomology ring for a finite cyclic group, and confirm that this computation agrees with what is known from Cartan-Eilenberg. Then we will generalize this technique to compute the cohomology ring for a finite abelian group. The presentation we will give is simpler than what is in the literature to date. We will then see that a straightforward generalization of the Tate resolution from a group ring to an arbitrary ring defined by monic polynomials will yield a method for computing the Hochschild cohomology algebra of that ring. In particular we will re-prove some results from the literature in a much more unified way than they were originally proved. We will also be able to prove some new results.
3

The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group.

Mkiva, Soga Loyiso Tiyo. January 2008 (has links)
<p>&nbsp / </p> <p align="left">The groups we consider in this study belong to the class <font face="F30">X</font><font face="F25" size="1"><font face="F25" size="1">0 </font></font><font face="F15">of all finitely generated groups with finite commutator subgroups.</font></p>
4

The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group.

Mkiva, Soga Loyiso Tiyo. January 2008 (has links)
<p>&nbsp / </p> <p align="left">The groups we consider in this study belong to the class <font face="F30">X</font><font face="F25" size="1"><font face="F25" size="1">0 </font></font><font face="F15">of all finitely generated groups with finite commutator subgroups.</font></p>
5

The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group

Mkiva, Soga Loyiso Tiyo January 2008 (has links)
Magister Scientiae - MSc / The groups we consider in this study belong to the class X0 of all nitely generated groups with nite commutator subgroups. We shall eventually narrow down to the groups of the form T owZn for some n 2 N and some nite abelian group T. For a X0-group H, we study the non-cancellation set, (H), which is de ned to be the set of all isomorphism classes of groups K such that H Z = K Z. For X0-groups H, on (H) there is an abelian group structure [38], de ned in terms of embeddings of K into H, for groups K of which the isomorphism classes belong to (H). If H is a nilpotent X0-group, then the group (H) is the same as the Hilton-Mislin (see [10]) genus group G(H) of H. A number of calculations of such Hilton-Mislin genus groups can be found in the literature, and in particular there is a very nice calculation in article [11] of Hilton and Scevenels. The main aim of this thesis is to compute non-cancellation (or genus) groups of special types of X0-groups such as mentioned above. The groups in question can in fact be considered to be direct products of metacyclic groups, very much as in [11]. We shall make extensive use of the methods developed in [30] and employ computer algebra packages to compute determinants of endomorphisms of nite groups. / South Africa
6

The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group

Mkiva, Soga Loyiso Tiyo January 2008 (has links)
>Magister Scientiae - MSc / The groups we consider in this study belong to the class Xo of all finitely generated groups with finite commutator subgroups. We shall eventually narrow down to the groups of the form T)<lw zn for some nE N and some finite abelian group T. For a Xo-group H, we study the non-cancellation set, X(H), which is defined to be the set of all isomorphism classes of groups K such that H x Z ~ K x Z. For Xo-groups H, on X(H) there is an abelian group structure [38], defined in terms of embeddings of K into H, for groups K of which the isomorphism classes belong to X(H). If H is a nilpotent Xo-group, then the group X(H) is the same as the Hilton-Mislin (see [10]) genus group Q(H) of H. A number of calculations of such Hilton-Mislin genus groups can be found in the literature, and in particular there is a very nice calculation in article [11] of Hilton and Scevenels. The main aim of this thesis is to compute non-cancellation (or genus) groups of special types of .Xo-groups such as mentioned above. The groups in question can in fact be considered to be direct products of metacyclic groups, very much as in [11]. We shall make extensive use of the methods developed in [30] and employ computer algebra packages to compute determinants of endomorphisms of finite groups.

Page generated in 0.0583 seconds