• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 68
  • 68
  • 29
  • 15
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A comparative study of 2 CAD-integrated FE-programs using the linear static analysis

Amin, Handren January 2009 (has links)
This Master’s thesis is summery of a comparative study of 2 commercial CAD-integrated FE-programs. These FE-programs were CATIA v5 and ABAQUS 6.3-7. The primary objective of this study is to investigate the basic FEA capabilities of CATIA and ABAQUS 6.7-3 in performing the linear static analysis and to identify whether there are any differences and similarities between results the both Finite Element FE codes give. The overall research question in the present thesis is: Do different FE programs, here CATIA and ABAQUS, give the same results for FE analysis giving the same models if subjected to the same boundary conditions? This research seeks to achieve its aims through making a comparative qualitative study. Certain pre-selections were performed in advance of conducting Finite element analysis and the comparison process to ensure that results would reflect only the most relevant and meaningful differences and similarities between the both FE-codes. Five different 3D solid models have been selected to perform linear static Finite element analysis on. All these models (case studies) are created in CATIA V5 and the linear static analysis conducted on using FE-codes CATIA v5 and ABAQUS 6.7-3. Three static responses (results) of the linear static analysis have been adopted as criteria for comparisons purposes. These criteria were: (1) displacements, (2) Von Mises stress, and (3) principal stress. The results of comparisons showed that there is a very good agreement in most cases and small gap between in a few cases. Results of this study demonstrate that the both FE-programs CATIA v5 and ABAQUS 6.7-3 have good capabilities to perform FE-analysis and they give very near results. Reason behind differences is that each of them uses a different algorithm for solving problems. The final answer for the research question is given with valuable recommendations for future work in the scope of this research.
12

Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis

Effa, Dawit (David) 12 September 2010 (has links)
Infrared (IR) imaging is a key technology in a variety of military and civilian applications, especially for night vision and remote sensing. Compared with cryogenically cooled IR sensors, uncooled infrared imaging devices have the advantages of being low cost, light weight, and superior reliability. The electro-thermal analysis of a microbolometer pixel is critical to determine both device performance and reliability. To date, most microbolometer analysis research has focused on performance optimization and computation of thermal conductance directly from the geometry. However, modeling of the thermal distribution across the microbolometer pixel is critical for the comprehensive analysis of system performance and reliability. Therefore, this thesis investigates the electro-thermo-mechanical characteristics of a microbolometer pixel considering the effects of joule heating and incoming IR energy. The contributions of the present research include the electro-thermal models for microbolometer and methods of validating thermal distribution using experimental results. The electro-thermal models explain the effect of microbolometer material properties and geometry on device performance and reliability. The research also contributes methods of estimating the thermal conductivity of microbolometer, which take into account different heat transfer mechanisms, including radiation and convection. Previous approaches for estimating the thermal conductance of uncooled microbolometer consider heat conduction via legs from the geometry of the pixel structure and material properties [2]. This approach assumes linear temperature distribution in the pixel legs structure. It also leaves out the various electro-thermal effects existing for multilayer structures. In the present research, a different approach is used to develop the thermal conductance of microbolometer pixel structure. The temperature distribution in the pixel is computed from an electro-thermal model. Then, the average temperature in the pixel microplate and the total heat energy generated by joule heating is utilized to compute the thermal conductance of the structure. The thesis discusses electro-thermal and thermo-mechanical modeling, simulation and testing of Polysilicon Multi-User MEMS Process (PolyMUMPs®) test devices as the groundwork for the investigation of microbolometer performance and reliability in space applications. An electro-thermal analytical and numerical model was developed to predict the temperature distribution across the microbolometer pixel by solving the second order differential heat equation. To provide a qualitative insight of the effect of different parameters in the thermal distribution, including material properties and device geometry, first an explicit formulation for the solution of the electro-thermal coupling is obtained using the analytical method. In addition, the electro-thermal model, which accounts for the effect of IR energy and radiation heat transfer, spreading resistance and transient conditions, was studied using numerical methods. In addition, an analytical model has been developed to compute the IR absorption coefficient of a Thin Single Stage (TSS) microbolometer pixel. The simulation result of this model was used to compute absorbed IR energy for the numerical model. Subsequently, the temperature distribution calculated from the analytical model is used to obtain the deflections that the structure undergoes, which will be fundamental for the reliability analysis of the device. Finite element analysis (FEA) has been simulated for the selected device using commercial software, ANSYS® multiphysics. Finite element simulation shows that the electro-thermal models predict the temperature distribution across a microbolometer pixel at steady-state conditions within 2.3% difference from the analytical model. The analytical and numerical models are also simulated and results for a temperature distribution within 1.6% difference. In addition, to validate the analytical and numerical electro-thermal and thermo-mechanical models, a PolyMUMPs® test device has been used. The test results showed a close agreement with the FEM simulation deflection of the test device.
13

Mechanical support design of analyzer for a diffraction enhanced x-ray imaging (DEI) system

Alagarsamy, Nagarajan 18 May 2007 (has links)
Diffraction Enhanced X-ray Imaging (DEI) uses synchrotron X-ray beams prepared and analyzed by perfect single crystals to achieve imaging contrast from a number of phenomena taking place in an object under investigation. The crystals used in DEI for imaging requires high precision positioning due to a narrow rocking curve. Typically, the angular precision required should be on the order of tens of nanoradians.<p>One of the problems associated with DEI is the inability to control, set, and fix the angle of the analyzer crystal in relation to the beam exiting the monochromator in the system. This angle is used to interpret the images acquired with an object present and the usual approach is to determine where the image was taken after the fact. If the angle is not correct, then the image is wasted and has to be retaken. If time or dose is not an issue, then retaking the image is not a serious problem. However, since the technique is to be developed for live animal or eventually human imaging, the lost images are no longer acceptable from either X-ray exposure or time perspectives.<p>Therefore, a mechanical positioning system for the DEI system should be developed that allows a precise setting and measurement of the analyzer crystal angles. In this thesis, the fundamental principles of the DEI method, the DEI system at the National Synchrotron Light Source (NSLS) and the sensitivity of the DEI system to vibration and temperature has been briefly studied to gain a better understanding of the problem. The DEI design at the NSLS was analyzed using finite element analysis software (ANSYS) to determine the defects in the current design which were making the system dimensionally unstable. Using the results of this analysis, the new analyzer support was designed aiming to eliminate the problems with the current design. The new design is much stiffer with the natural frequency spectrum raised about eight times. <p> This new design will improve the performance of the system at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory, New York, USA and should assist in the development of a new DEI system for the Bio-Medical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS), Saskatoon, CANADA.
14

Design And Verification Of Diamond Based Capacitive Micromachined Ultrasonic Transducer

Cetin, Ahmet Murat 01 February 2011 (has links) (PDF)
Potential applications such as high intensity focused ultrasound in medical therapeutics require larger output pressures. To offer unprecedented acoustic output pressure in transmit without the limitations, Capacitive Micromachined Ultrasonic Transducer operation modes of collapse and collapse-snapback are introduced in literature. Both operation modes require the membrane to contact the substrate surface, which poses a problem on the durability of the membrane in terms of structural integrity and tribological property. Based on the additional requirements of these modes, diamond is proposed as the ultimate solution to be used as the membrane material. Mechanical, thermal, and electrical properties of diamond are all in favor of its use in the microfabrication of CMUTs. This thesis introduces the design and test results of the first diamond-based CMUTs as an alternative to silicon and silicon nitride based CMUTs. Simulations are performed using Finite Element Methods (FEM) using a commercially available software package, ANSYS. The diamond-based CMUT is operated successfully both in air and immersion for the first time. Fully customizable in-house software is developed to command and control the test setup equipments for current dissertation and future work. Fresnel and Fraunhofer regions of the CMUT are characterized in sunflower oil using a combination of advanced hardware and software. The experimental results of radiation and diffraction for the diamond-based circular CMUT are verified by the theoretical calculations for a circular piston transducer. The results obtained from the first generation diamond-based CMUTs presented the diamond as a promising material for membranes in CMUTs.
15

Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis

Effa, Dawit (David) 12 September 2010 (has links)
Infrared (IR) imaging is a key technology in a variety of military and civilian applications, especially for night vision and remote sensing. Compared with cryogenically cooled IR sensors, uncooled infrared imaging devices have the advantages of being low cost, light weight, and superior reliability. The electro-thermal analysis of a microbolometer pixel is critical to determine both device performance and reliability. To date, most microbolometer analysis research has focused on performance optimization and computation of thermal conductance directly from the geometry. However, modeling of the thermal distribution across the microbolometer pixel is critical for the comprehensive analysis of system performance and reliability. Therefore, this thesis investigates the electro-thermo-mechanical characteristics of a microbolometer pixel considering the effects of joule heating and incoming IR energy. The contributions of the present research include the electro-thermal models for microbolometer and methods of validating thermal distribution using experimental results. The electro-thermal models explain the effect of microbolometer material properties and geometry on device performance and reliability. The research also contributes methods of estimating the thermal conductivity of microbolometer, which take into account different heat transfer mechanisms, including radiation and convection. Previous approaches for estimating the thermal conductance of uncooled microbolometer consider heat conduction via legs from the geometry of the pixel structure and material properties [2]. This approach assumes linear temperature distribution in the pixel legs structure. It also leaves out the various electro-thermal effects existing for multilayer structures. In the present research, a different approach is used to develop the thermal conductance of microbolometer pixel structure. The temperature distribution in the pixel is computed from an electro-thermal model. Then, the average temperature in the pixel microplate and the total heat energy generated by joule heating is utilized to compute the thermal conductance of the structure. The thesis discusses electro-thermal and thermo-mechanical modeling, simulation and testing of Polysilicon Multi-User MEMS Process (PolyMUMPs®) test devices as the groundwork for the investigation of microbolometer performance and reliability in space applications. An electro-thermal analytical and numerical model was developed to predict the temperature distribution across the microbolometer pixel by solving the second order differential heat equation. To provide a qualitative insight of the effect of different parameters in the thermal distribution, including material properties and device geometry, first an explicit formulation for the solution of the electro-thermal coupling is obtained using the analytical method. In addition, the electro-thermal model, which accounts for the effect of IR energy and radiation heat transfer, spreading resistance and transient conditions, was studied using numerical methods. In addition, an analytical model has been developed to compute the IR absorption coefficient of a Thin Single Stage (TSS) microbolometer pixel. The simulation result of this model was used to compute absorbed IR energy for the numerical model. Subsequently, the temperature distribution calculated from the analytical model is used to obtain the deflections that the structure undergoes, which will be fundamental for the reliability analysis of the device. Finite element analysis (FEA) has been simulated for the selected device using commercial software, ANSYS® multiphysics. Finite element simulation shows that the electro-thermal models predict the temperature distribution across a microbolometer pixel at steady-state conditions within 2.3% difference from the analytical model. The analytical and numerical models are also simulated and results for a temperature distribution within 1.6% difference. In addition, to validate the analytical and numerical electro-thermal and thermo-mechanical models, a PolyMUMPs® test device has been used. The test results showed a close agreement with the FEM simulation deflection of the test device.
16

Use of geosynthetics on subgrade and on low and variable fill foundation

Eirini Christoforidou (11819009) 19 December 2021 (has links)
<p>There are significant problems during construction to establish an adequate foundation for fills and/or subgrade for pavements when the natural ground has low-bearing soils. Geosynthetics such as geogrids, geotextiles and/or geocells could provide an alternative, less costly in time and money, to establish an adequate foundation for the fill and/or subgrade. There is extensive evidence in the literature and on DOTs practices about the suitability of using geotextiles in pavements as separators. Previous studies have also shown that the use of geogrids in flexible pavements as a reinforcing mechanism could decrease the thickness of the base layer and/or increase the life of the pavement. In this study, analyses of selected pavement designs using Pavement ME, while considering geogrid-enhanced base or subgrade resilient modulus values, showed that geogrid-reinforcement, when placed at the interface between subgrade and base, did not produce significant benefits, as only a modest increase in pavement life was predicted. In addition, parametric finite element analyses were carried out to investigate the potential benefits of placing a geogrid at the base of a fill over a localized weak foundation zone. The analyses showed that the use of geogrids is beneficial only when: (a) the stiffness of the weak foundation soil is about an order of magnitude smaller than the rest of the foundation soil; and (b) the horizontal extent of the weak foundation soil is at least 30% of the base of the embankment foundation. The largest decrease in differential settlements at the surface of the fill, resulting from geogrid-reinforcement, was less than 20% and, therefore, it is unlikely that the sole use of geogrids would be sufficient to mitigate differential settlements. Based on previous studies, a geocell mattress, which is a three-dimensional geosynthetic filled with different types of materials, could act as a stiff platform at the base of an embankment and bridge over weak zones in the foundation. However, given the limited experience on the use of geocells, further research is required to demonstrate that geocells can be effectively used instead of other reinforcement methods.</p>
17

Thermo-visco-elasto-plastic modeling of composite shells based on mechanics of structure genome

Yufei Long (11799269) 20 December 2021 (has links)
Being a widely used structure, composite shells have been studied for a long time. The features of small thickness, heterogeneity, and anisotropy of composite shells have created many challenges for analyzing them. A number of theories have been developed for modeling composite shells, while they are either not practical for engineering use, or rely on assumptions that do not always hold. Consequently, a better theory is needed, especially for the application on challenging problems such as shells involving thermoelasticity, viscoelasticity, or viscoplasticity.<br><br>In this dissertation, a shell theory based on mechanics of structure genome (MSG), a unified theory for multiscale constitutive modeling, is developed. This theory is capable of handling fully anisotropy and complex heterogeneity, and because the derivation follows principle of minimum information loss (PMIL) and using the variational asymptotic method (VAM), high accuracy can be achieved. Both a linear version and a nonlinear version using Euler method combined with Newton-Raphson method are presented. This MSG-based shell theory is used for analyzing the curing process of composites, deployable structures made with thin-ply high strain composite (TP-HSC), and material nonlinear shell behaviors.<br><br>When using the MSG-based shell theory to simulate the curing process of composites, the formulation is written in an analytical form, with the effect of temperature change and degree of cure (DOC) included. In addition to an equivalent classical shell theory, a higher order model with the correction from initial geometry and transverse shear deformation is presented in the form of the Reissner-Mindlin model. Examples show that MSG-based shell theory can accurately capture the deformation caused by temperature change and cure shrinkage, while errors exist when recovering three-dimensional (3D) strain field. Besides, the influence of varying transverse shear stiffness needs to be further studied.<br><br>In order to analyze TP-HSC deployable structures, linear viscoelasticity behavior of composite shells is modeled. Then, column bending test (CBT), an experiment for testing the bending stiffness of thin panels under large bending deformation, is simulated with both quasi-elastic (QE) and direct integration (DI) implementation of viscoelastic shell properties. Comparisons of the test and analysis results show that the model is capable of predicting most of the measured trends. Residual curvature measured in the tests, but not predicted by the present model, suggests that viscoplasticity should be considered. A demonstrative study also shows the potential of material model calibration using the virtual CBT developed in this work. A deployable boom structure is also analyzed. The complete process of flattening, coiling, stowage, deployment and recovery is simulated with the viscoelastic shell model. Results show that major residual deformation happens in the hoop direction.<br><br>A nonlinear version of the MSG-based general purpose constitutive modeling code SwiftComp is developed. The nonlinear solving algorithm based on the combined Euler-Newton method is implemented into SwiftComp. For the convenience of implementing a nonlinear material model, the capability of using user material is also added. A viscoelastic material model and a continuum damage model is tested and shows excellent match when compared with Abaqus results with solid elements and UMAT. Further validation of the nonlinear SwiftComp is done with a nonlinear viscoelastic-viscoplastic model. The high computational cost is emphasized with a preliminary study with surrogate model.
18

Fabrication and Performance Evaluation of Porous Microsphere Filled Epoxy Composites

Chitrakar, Rojer 01 September 2021 (has links)
Syntactic foams are hollow particles-filled lightweight composites that are widely used in areas that require high strength while maintaining low weight and density. These foams are highly tailorable materials whose properties can be altered during the manufacturing process by changing various parameters like matrix and microballoon material type, size, distribution, as well as the volume fraction and wall thickness of microballoons. Therefore, understanding the effect of these parameter changes in the behavior of syntactic foams is very important to manufacture the foam for different applications. In the present study, syntactic foams of various volume fractions of microballoons were fabricated and different mechanical testing was conducted to study their elastic and viscoelastic behavior. Moreover, density, void content, and microstructure of the syntactic foam with varying volume fractions of microballoons were also studied to better characterize these foams. Results show that changes in the volume fraction of the microballoons had a significant impact on the elastic and viscoelastic behavior of the foams. The introduction of the microballoons into the epoxy resin decreased the density of the epoxy resin by up to 43.36% and at the same time increasing the specific modulus by up to 21.059%. In addition, representative 3D models of these syntactic foams were also developed to further study the elastic behavior of these materials which were found to be in good agreement with the experimental results. These findings will help in designing and optimizing the material properties of the syntactic foam required for different applications.
19

Design of a helmet with an advanced layered composite for energy dissipation using a multi-material compliant mechanism synthesis

Gokhale, Vaibhav V. January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traumatic Brain Injuries (TBI) are one of the most apprehensive issues today. In recent years a lot of research has been done for reducing the risk of TBI, but no concrete solution exists yet. Helmets are one of the protective devices that are used to prevent human beings from mild TBI. For many years some kind of foam has been used in helmets for energy absorption. But, in recent years non-traditional solutions other than foam are being explored by different groups. Focus of this thesis is to develop a completely new concept of energy absorption for helmet liner by diverting the impact forces in radial directions normal to the direction of impact. This work presents a new design of an advanced layered composite (ALC) for energy dissipation through action of a 3D array of compliant mechanisms. The ALC works by diverting incoming forces in multiple radial directions and also has design provisions for reducing rotational forces. Design of compliant mechanism is optimized using multi-material topology optimization algorithm considering rigid and flexible material phases together with void. The design proposed here needs to be manufactured using the advanced polyjet printing additive manufacturing process. A general and parametric design procedure is explained which can be used to produce variants of the designs for different impact conditions and different applications. Performance of the designed ALC is examined through a benchmark example in which a comparison is made between the ALC and the traditional liner foam. An impact test is carried out in this benchmark example using dynamic Finite Element Analysis in LS DYNA. The comparison parameters under consideration are gradualness of energy absorption and peak linear force transmitted from the ALC to the body in contact with it. The design in this article is done particularly for the use in sports helmets. However, the ALC may find applications in other energy absorbing structures such as vehicle crashworthy components and protective gears. The ultimate goal of this research is to provide a novel design of energy absorbing structure which reduces the risk of head injury when the helmet is worn.
20

Internal State Variable Plasticity-Damage Modeling of AISI 4140 Steel Including Microstructure-Property Relations: Temperature and Strain Rate Effects

Nacif el Alaoui, Reda 09 December 2016 (has links)
Mechanical structure-property relations have been quantified for AISI 4140 steel under different strain rates and temperatures. The structure-property relations were used to calibrate a microstructure-based internal state variable plasticity-damage model for monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study the damage-triaxiality dependence for model validation purposes. Fracture surface analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void nucleation and void sizes in the different specimens. The stress-strain behavior exhibited a fairly large applied stress state (tension, compression dependence, and torsion), a moderate temperature dependence, and a relatively small strain rate dependence.

Page generated in 0.1044 seconds