Spelling suggestions: "subject:"crinite Element 3methods (FEM)"" "subject:"crinite Element 4methods (FEM)""
1 |
Experimental investigation and computational modelling of the thermoforming process of thermoplastic starchSzegda, Damian January 2009 (has links)
Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due largely to its complex compositions. Apart from limited recycling of some easily identifiable packaging wastes that can be separated economically, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin -wall structures. Hitherto these thin sheets have almost exclusively been made of oilbased polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This thesis describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets using a commercially available material. The experimental work has been carried in order to characterise the deformation behaviour of the material with regard to different temperature, moisture contents and strain rates. Thermoforming of the material was performed and samples produced were used for comparison and verification of the computational modelling of the thermoforming process. In the first attempt to model the thermoforming process, a hyperelastic constitutive equation was established to approximate the material behaviour taking account of the combined effects of temperature and moisture content and a simple ii membrane model with constrained deformation was used to model an axisymmetric case of thermoforming. Simulations with this model showed that moisture content mostly affects the pressure required to push the sheet into the mould while moisture variation during thermoforming has little effect on the final thickness distribution of the product. Considerable discrepancies were found in the thickness distribution between the predictions from the model and the experimental measurements. Further attempts were made to take account of the elasto-plastic behaviour of the material and a more complex three-dimensional FE model was developed using ANSYS/LS-DYNA. Based on the findings in the simpler modelling work, no attempt was made to incorporate the moisture content effect on material behaviour but the material parameters for the elasto-plastic constitutive equation were obtained from high speed tensile tests so that moisture variation during thermoforming could be minimised and neglected. The predictions from this model have led to significant improvements in prediction of the thickness distribution which has become much closer to the experimental measurements in comparison with the hyperelastic model. This work provides some important insights into thermoforming of thermoplastic starch materials: a) Deformation behaviour of such materials depends strongly on the moisture content and the temperature, both of which affect behaviour during thermoforming processes, including the preheating stage; b) moisture variation during the thermoforming process has a significant effect on the pressure required for the deformation. This also leads to variation of moisture content distribution in the final product, which in turn affects the material properties such as ductility or impact strength at different positions in the thermoformed structure; c) thermoforming of thermoplastic starch materials can be simulated more accurately by an elasto-plastic model and the LS-DYNA algorithm in comparison with a hyperelastic membrane model. This work has provided useful information on thermoforming of thermoplastic starch materials with particular reference to the design of thermoforming tools and to the careful control of processing conditions including preheating. It has also laid a solid foundation for future work on how the moisture variation impacts on the formation of defects such as incomplete forming due to material hardening and fracture due to loss of ductility.
|
2 |
THE ERROR ESTIMATION IN FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS WITH LOW REGULARITYJing Yang (8800844) 05 May 2020 (has links)
<div>
<div>
<div>
<p>This dissertation contains two parts: one part is about the error estimate for the
finite element approximation to elliptic PDEs with discontinuous Dirichlet boundary
data, the other is about the error estimate of the DG method for elliptic equations
with low regularity.
</p>
<p>Elliptic problems with low regularities arise in many applications, error estimate
for sufficiently smooth solutions have been thoroughly studied but few results have
been obtained for elliptic problems with low regularities. Part I provides an error estimate for finite element approximation to elliptic partial differential equations (PDEs)
with discontinuous Dirichlet boundary data. Solutions of problems of this type are
not in H1 and, hence, the standard variational formulation is not valid. To circumvent this difficulty, an error estimate of a finite element approximation in the W1,r(Ω)
(0 < r < 2) norm is obtained through a regularization by constructing a continuous
approximation of the Dirichlet boundary data. With discontinuous boundary data,
the variational form is not valid since the solution for the general elliptic equations
is not in H1. By using the W1,r (1 < r < 2) regularity and constructing continuous approximation to the boundary data, here we present error estimates for general
elliptic equations.
</p>
<p>Part II presents a class of DG methods and proves the stability when the solution belong to H1+ε where ε < 1/2 could be very small. we derive a non-standard
variational formulation for advection-diffusion-reaction problems. The formulation is
defined in an appropriate function space that permits discontinuity across element
</p>
</div>
</div>
<div>
<div>
<p>viii
</p>
</div>
</div>
</div>
<div>
<div>
<div>
<p>interfaces and does not require piece wise Hs(Ω), s ≥ 3/2, smoothness. Hence, both
continuous and discontinuous (including Crouzeix-Raviart) finite element spaces may
be used and are conforming with respect to this variational formulation. Then it establishes the a priori error estimates of these methods when the underlying problem
is not piece wise H3/2 regular. The constant in the estimate is independent of the
parameters of the underlying problem. Error analysis presented here is new. The
analysis makes use of the discrete coercivity of the bilinear form, an error equation,
and an efficiency bound of the continuous finite element approximation obtained in
the a posteriori error estimation. Finally a new DG method is introduced i to over-
come the difficulty in convergence analysis in the standard DG methods and also
proves the stability.
</p>
</div>
</div>
</div>
|
3 |
Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in KuwaitAlmutairi, Badriya L. January 2017 (has links)
Wind energy technologies are considered to be among the most promising types of renewable energy sources, which have since attracted broad considerations through recent years due to the soaring oil prices and the growing concerns over climate change and energy security. In Kuwait, rapid industrialisation, population growth and increasing water desalination are resulting in high energy demand growth, increasing the concern of oil diminishing as a main source of energy and the climate change caused by CO2 emissions from fossil fuel based energy. These demands and challenges compelled governments to embark on a diversification strategy to meet growing energy demand and support continued economic growth. Kuwait looked for alternative forms of energy by assessing potential renewable energy resources, including wind and sun. Kuwait is attempting to use and invest in renewable energy due to the fluctuating price of oil, diminishing reserves, the rapid increase in population, the high consumption of electricity and the environment protection. In this research, wind energy will be investigated as an attractive source of energy in Kuwait.
|
4 |
Multidisciplinary design and optimisation of liquid containers for sloshing and impactKingsley, Thomas Charles 24 January 2006 (has links)
The purpose of this study is to perform an investigation of the numerical methods that may contribute to the design and analysis of liquid containers. The study examines several of these methods individually, namely Computational Fluid Dynamics (CFD) analysis of sloshing and Finite Element Methods (FEM) analysis of impact, to evaluate their contribution to the design cycle. Techniques that enhance the use of the various methods are presented and examined to demonstrate effectiveness. In the case of sloshing analysis, experimental tests performed add to the understanding of the phenomena at hand and qualifies the validity of the numerical method used (CFD). As a final contribution, the study presents a method of utilising impact analysis tools, FEM, and CFD in a Multidisciplinary Design Optimisation (MDO) environment. This is an introductory attempt at demonstrating a single coupled multidisciplinary method of designing liquid containers. The results of the study demonstrate a number of valuable numerical techniques that may be used in the design of liquid containers. The presented Total Deviation Value (TDV) proves to be an effective single quantification of sloshing performance and the CFD tools used to determine the value demonstrate sufficient ability to reproduce the sloshing event itself. More advanced experimental facilities would provide a more in-depth understanding of the limitations of the CFD analysis. The use of numerical optimisation adds a valuable dimension to the use of numerical simulations. Significant design improvements are possible for several design variables without performing exhaustive studies and provide interesting information about design trends. Finally, the use of multiple disciplines, FEM and CFD, in conjunction with the available numerical optimisation routines offers a powerful multidisciplinary design tool that can be adapted to any base geometry and is capable of finding optimal trade offs between the two disciplines according to the designer’s needs. This study provides a platform for further investigations in the use and coupling of sloshing and impact analysis in the design of industrial liquid container applications. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
|
Page generated in 0.0864 seconds