• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The numerical modelling of fox rabies

Abo Elrish, Mohamed Rasmy January 2002 (has links)
Finite difference numerical methods are developed for the solution system in the biomedical sciences; namely, fox-rabies model. First-order methods and second-order method are developed to solve the fox-rabies equations. The fox-rabies model is extended to one-space dimension to incorporate diffusion. The reaction terms in these systems of partial differential equations contain non-linear expressions. It is seen that the numerical solutions are obtained by solving non-linear algebraic system at each time step, as opposed to solving anon-linear algebraic system which is often required when integrating non-linear partial differential equations. The numerical methods proposed for the solution of the initial-value problem for the fox-rabies model are characterized to be implicit. In each case, however, it seen that the numerical solutions are obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it seen that the proposed methods have an identical stability properties to those of the well-known, first-order, Euler method. The proposed methods for the numerical solution of partial differential equations are seen to be economical and reliable. Error analysis for the methods, computer implementation and numerical results are discussed. The stability of the numerical method is analyzed using maximum principle analysis.
2

Numerical modelling of some systems in the biomedical sciences

Al-Showaikh, Faisal Nasser Mohammed January 1998 (has links)
Finite-difference numerical methods are developed for the solution of some systems in the biomedical sciences; namely, a predator-prey model and the SEIR (Susceptible/Exposed/ Infectious/Recovered) measles model. First-order methods are developed to solve the predator-prey model and one second-order method is developed to solve the SEIR measles model. The predator-prey model is extended to one-space dimension to incorporate diffusion. The SEIR measles model is extended to one-space dimension to incorporate (i) diffusion, (ii) convection and (iii) diffusion-convection. The SEIR measles model is extended further to model diffusion in two-space dimensions. The reaction terms in these systems of partial differntial equations contain nonlinear expressions. Nevetheless, it is seen that the numerical solutions are obtained by solving a linear algebraic system at each time step, as opposed to solving a nonlinear algebraic systems, which is often required when integrating non-linear partial differential equations. The development of each numerical method is made in the light of experience gained in solving the system of ordinary differential equations for each system. The numerical methods proposed for the solution of the initial-value problem for the predator-prey and measles models are characterized to be implicit. However, in each case it is seen that the numerical solutions are obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it is seen that the proposed methods have superior stability properties to those of the well-known, first-order, Euler method to which they are compared. Incorporating the proposed methods into the numerical solution of partial differential equations is seen to lead to economical and reliable methods for solving the systems.

Page generated in 0.107 seconds