• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 47
  • 18
  • 13
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 222
  • 52
  • 44
  • 44
  • 42
  • 40
  • 38
  • 35
  • 33
  • 27
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Stable high-order finite difference methods for aerodynamics /

Svärd, Magnus, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 8 uppsatser.
102

Local mesh refinement algorithms for enhanced modeling capabilities in the FDTD method /

Chavannes, Nicolas Pierre. January 2002 (has links)
Diss. ETH No. 14577. Eidgenöss. Techn. Hochsch., Diss.--Zürich, 2002.
103

Development of an accelerated finite-difference time-domain solver using modern graphics processors

Price, Daniel Kenneth. January 2009 (has links)
Thesis (M.E.E.)--University of Delaware, 2007. / Principal faculty advisor: Dennis W. Prather, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
104

Simulating ultracold matter : horizons and slow light /

Farrell, Conor. January 2008 (has links)
Thesis (Ph.D.) - University of St Andrews, January 2008.
105

A Cartesian grid method for solving the streamfunction vorticity equations in irregular geometries /

Calhoun, Donna. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 165-171).
106

Signal and power integrity co-simulation using the multi-layer finite difference method

Bharath, Krishna. January 2009 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Madhavan Swaminathan; Committee Member: Andrew F. Peterson; Committee Member: David C. Keezer; Committee Member: Saibal Mukhopadyay; Committee Member: Suresh Sitaraman.
107

Modeling and design of resonators for electron paramagnetic resonance imaging and ultra high field magnetic resonance imaging

Stefan, Anca Irina, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 115-120).
108

Predicting temperature rise and thermal cracking in concrete

Robbins, Michael Edward. January 1900 (has links)
Thesis (M.A.)--University of Toronto, 2007. / "PCA R&D Serial No. 3030." (cover)
109

Numerics of Elastic and Acoustic Wave Motion

Virta, Kristoffer January 2016 (has links)
The elastic wave equation describes the propagation of elastic disturbances produced by seismic events in the Earth or vibrations in plates and beams. The acoustic wave equation governs the propagation of sound. The description of the wave fields resulting from an initial configuration or time dependent forces is a valuable tool when gaining insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior of underwater sound. In the most general case exact solutions to both the elastic wave equation and the acoustic wave equation are impossible to construct. Numerical methods that produce approximative solutions to the underlaying equations now become valuable tools. In this thesis we construct numerical solvers for the elastic and acoustic wave equations with focus on stability, high order of accuracy, boundary conditions and geometric flexibility. The numerical solvers are used to study wave boundary interactions and effects of curved geometries. We also compare the methods that we have constructed to other methods for the simulation of elastic and acoustic wave motion.
110

An ADMM approach to the numerical solution of state constrained optimal control problems for systems modeled by linear parabolic equations

Song, Yongcun 05 July 2018 (has links)
We address in this thesis the numerical solution of state constrained optimal control problems for systems modeled by linear parabolic equations. For the unconstrained or control-constrained optimal control problem, the first order optimality condition can be obtained in a general way and the associated Lagrange multiplier has low regularity, such as in the L²(Ω). However, for state-constrained optimal control problems, additional assumptions are required in general to guarantee the existence and regularity of Lagrange multipliers. The resulting optimality system leads to difficulties for both the numerical solution and the theoretical analysis. The approach discussed here combines the alternating direction of multipliers (ADMM) with a conjugate gradient (CG) algorithm, both operating in well-chosen Hilbert spaces. The ADMM approach allows the decoupling of the state constraints and the parabolic equation, in which we need solve an unconstrained parabolic optimal control problem and a projection onto the admissible set in each iteration. It has been shown that the CG method applied to the unconstrained optimal control problem modeled by linear parabolic equation is very efficient in the literature. To tackle the issue about the associated Lagrange multiplier, we prove the convergence of our proposed algorithm without assuming the existence and regularity of Lagrange multipliers. Furthermore, a worst case O(1/k) convergence rate in the ergodic sense is established. For numerical purposes, we employ the finite difference method combined with finite element method to implement the time-space discretization. After full discretization, the numerical results we obtain validate the methodology discussed in this thesis.

Page generated in 0.0564 seconds