Spelling suggestions: "subject:"crinite differences time domain analysis"" "subject:"crinite differences lime domain analysis""
1 |
Contrawound toroidal helical antenna modeling using the FDTD methodElSherbini, Khaled Mohammad. January 2000 (has links)
Thesis (Ph. D.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains xiii, 325 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 138-144).
|
2 |
FDTD measurement of the reflection coefficient associated with total internal reflection from gainy Lorentzian mediaTuerxunjiang, Abulikemu, January 2008 (has links) (PDF)
Thesis (M.S. in physics)--Washington State University, December 2008. / Title from PDF title page (viewed on July 10, 2009). "Department of Physics and Astronomy." Includes bibliographical references (p. 64-68).
|
3 |
Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic mediaKung, Christopher W., January 2009 (has links)
Thesis (Ph. D.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 154-158).
|
4 |
Development of four novel UWB antennas assisted by FDTD methodLee, Kwan-Ho, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xvii, 165 p.; also includes graphics (some col.). Includes bibliographical references (p. 158-165).
|
5 |
FDTD analysis of passive structures in RF IC'SSpivey, David Jeremiah 01 January 2001 (has links)
Microwave circuits play an important role in wireless communications. Microwave circuits are made up of many components, including passive devices. Passive devices include resistors, capacitors, inductors, and transformers. These passive devices are used to help lower noise and to allow signals to pass effectively though the circuit. The Finite-Difference Time-Domain (FDTD) method is a powerful tool used to analyze the electromagnetic properties of objects. FDTD can be used to model the electromagnetic behavior of microwave circuits. Important electromagnetic properties such as S-parameters, effective dielectric constant, phase constant, and the movement of the electric and magnetic fields through the circuit can be extracted from a single FDTD simulation. Also of particular interest is the frequency response of a circuit, which can be determined by taking the Fourier transform of the time-domain results. FDTD is an efficient way to determine many electromagnetic characteristics of a microwave circuit. FDTD offers a programmer much freedom in assigning the shape, properties, and size of a structure that is to be analyzed. Also, FDTD is more robust than other electromagnetic analysis methods due to the algorithm it uses in finding the electric and magnetic fields. These useful aspects of FDTD make it the top choice in analyzing passive devices in microwave circuits. The thesis involves the electromagnetic analysis of passive structures that are used in RF IC's. Circuits that will be analyzed include a low-pass filter, antenna, and coplanar waveguides. This leads to the ultimate goal of the thesis, the analysis of a spiral inductor that is to be used in an RF IC. Spiral inductors are used as passive devices in planar microwave circuits. Spiral inductors can take on several shapes, with the square being the shape of interest in this thesis. FDTD will be used to analyze the electromagnetic properties of the spiral inductor, with the inductance being extracted from the values of the electromagnetic variables calculated during the simulation. Two types of spiral inductors will be analyzed; a three-turn spiral inductor and an eight-turn spiral inductor. Both types of spiral inductor will be analyzed on silicon and gallium arsenide dielectric substrates. The inductance values extracted from the spiral inductor can be used to determine how the inductor will behave as part of a microwave circuit. Inductor behavior is critical in that the performance of an RF IC will be affected if inductors are not performing optimally.
|
6 |
A novel method for incorporating periodic boundaries into the FDTD method and the application to the study of structural color of insectsLee, Richard Todd. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Smith, Glenn; Committee Member: Buck, John; Committee Member: Goldsztein, Guillermo; Committee Member: Peterson, Andrew; Committee Member: Scott, Waymond. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
7 |
Development of an accelerated finite-difference time-domain solver using modern graphics processorsPrice, Daniel Kenneth. January 2009 (has links)
Thesis (M.E.E.)--University of Delaware, 2007. / Principal faculty advisor: Dennis W. Prather, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
|
Page generated in 0.115 seconds