• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hall Effect Modeling in FEM Simulators and Comparison to Experimental Results in Silicon and Printed Sensors

Frem, Leonardo A 01 June 2016 (has links) (PDF)
Finite element method simulation models for thin-film semiconductor-based Hall sensors were developed using secondary data in order to understand their behavior under strong magnetic fields. Given a device geometry and charge carrier density and mobility, the models accurately calculated sensor resistance, Hall voltage under a normally-incident constant magnetic field, and expected offset from a population of Hall devices. The model was successfully matched against data from integrated chip Hall sensors from St. Jude Medical. Additionally, the feasibility of creating Hall effect devices with common carbon ink was explored experimentally. The material properties obtained from testing these ink-based devices through the Van der Pauw method were added to the simulation model to analyze validity of the collected data.
2

Pevnostní analýza řezných nástrojů / Strength analysis of cutting tools

Petrlíková, Helena January 2010 (has links)
This work is focused on the stress-strain analysis of a cutting tool. At the beginning, the study of available literature and scientific articles relating the topic is carried out. The solution of stresses and strains in whole real system has been carried out based on the computational simulation using the finite element method (FEM). The work contains a detailed description of the creation of the computational model. Model of geometry of the system has been created in the SolidWorks program. Computational simulation including the solution was implemented in the ANSYS Workbench program as well as in the classical environment of ANSYS 12.0. This work includes the presentation of results and subsequent stress-strain analysis of the cutting tool. Last part of this work deals with the modal analysis and harmonic analysis of cutting tools made in classical environment of ANSYS program.

Page generated in 0.0966 seconds