• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The complete Heyting algebra of subsystems and contextuality

Vourdas, Apostolos January 2013 (has links)
no / The finite set of subsystems of a finite quantum system with variables in Z(n), is studied as a Heyting algebra. The physical meaning of the logical connectives is discussed. It is shown that disjunction of subsystems is more general concept than superposition. Consequently, the quantum probabilities related to commuting projectors in the subsystems, are incompatible with associativity of the join in the Heyting algebra, unless if the variables belong to the same chain. This leads to contextuality, which in the present formalism has as contexts, the chains in the Heyting algebra. Logical Bell inequalities, which contain "Heyting factors," are discussed. The formalism is also applied to the infinite set of all finite quantum systems, which is appropriately enlarged in order to become a complete Heyting algebra.
2

Phase space methods in finite quantum systems

Hadhrami, Hilal Al January 2009 (has links)
Quantum systems with finite Hilbert space where position x and momentum p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations S(2ξ,Z(p)) in ξ-partite finite quantum systems are studied and constructed explicitly. Examples of applying such simple method is given for the case of bi-partite and tri-partite systems. The quantum correlations between the sub-systems after applying these transformations are discussed and quantified using various methods. An extended phase-space x-p-X-P where X, P ε Z(d) are position increment and momentum increment, is introduced. In this phase space the extended Wigner and Weyl functions are defined and their marginal properties are studied. The fourth order interference in the extended phase space is studied and verified using the extended Wigner function. It is seen that for both pure and mixed states the fourth order interference can be obtained.
3

Phase space methods in finite quantum systems.

Hadhrami, Hilal Al January 2009 (has links)
Quantum systems with finite Hilbert space where position x and momentum p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations S(2¿,Z(p)) in ¿-partite finite quantum systems are studied and constructed explicitly. Examples of applying such simple method is given for the case of bi-partite and tri-partite systems. The quantum correlations between the sub-systems after applying these transformations are discussed and quantified using various methods. An extended phase-space x¿p¿X¿P where X, P ¿ Z(d) are position increment and momentum increment, is introduced. In this phase space the extended Wigner and Weyl functions are defined and their marginal properties are studied. The fourth order interference in the extended phase space is studied and verified using the extended Wigner function. It is seen that for both pure and mixed states the fourth order interference can be obtained. / Ministry of Higher Education, Sultanate of Oman

Page generated in 0.0451 seconds