• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Chemical Reactions Inside a Shock-Tube by the Space-Time Conservation Element and Solution Element Method

Bilyeu, David Lawrence 05 September 2008 (has links)
No description available.
2

LOW-ORDER DISCRETE DYNAMICAL SYSTEM FOR H<sub>2</sub>-AIR FINITE-RATE COMBUSTION PROCESS

Zeng, Wenwei 01 January 2015 (has links)
A low-order discrete dynamical system (DDS) for finite-rate chemistry of H2-air combustion is derived in 3D. Fourier series with a single wavevector are employed to represent dependent variables of subgrid-scale (SGS) behaviors for applications to large-eddy simulation (LES). A Galerkin approximation is applied to the governing equations for comprising the DDS. Regime maps are employed to aid qualitative determination of useful values for bifurcation parameters of the DDS. Both isotropic and anisotropic assumptions are employed when constructing regime maps and studying bifurcation parameters sequences. For H2-air reactions, two reduced chemical mechanisms are studied via the DDS. As input to the DDS, physical quantities from experimental turbulent flow are used. Numerical solutions consisting of time series of velocities, species mass fractions, temperature, and the sum of mass fractions are analyzed. Numerical solutions are compared with experimental data at selected spatial locations within the experimental flame to check whether this model is suitable for an entire flame field. The comparisons show the DDS can mimic turbulent combustion behaviors in a qualitative sense, and the time-averaged computed results of some species are quantitatively close to experimental data.
3

Finite Volume Solutions Of 1d Euler Equations For High Speed Flows With Finite-rate Chemistry

Erdem, Birsen 01 December 2003 (has links) (PDF)
In this thesis, chemically reacting flows are studied mainly for detonation problems under 1D, cylindrical and spherical symmetry conditions. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is described. The Euler equations with finite-rate chemistry are discretized by Finite-Volume method and solved implicitly by using a time-spliting method. Inviscid fluxes are computed using Roe Flux Difference Splitting Model. The numerical solution is implemented in parallel using domain decomposition and PVM library routines for inter-process communication. The solution algorithm is validated first against the numerical and experimental data for a shock tube problem with and without chemical reactions and for a cylindrical and spherical propagation of a shock wave. 1D, cylindrically and spherically symmetric detonations of H2:O2:Ar mixture are studied next.
4

Sub-grid models for Large Eddy Simulation of non-conventional combustion regimes

Li, Zhiyi 29 April 2019 (has links) (PDF)
Novel combustion technologies ensuring low emissions, high efficiency and fuel flexibility are essential to meet the future challenges associated to air pollution, climate change and energy source shortage, as well as to cope with the increasingly stricter environmental regulation. Among them, Moderate or Intense Low oxygen Dilution (MILD) combustion has recently drawn increasing attention. MILD combustion is achieved through the recirculation of flue gases within the reaction region, with the effect of diluting the reactant streams. As a result, the reactivity of the system is reduced, a more uniform reaction zone is obtained, thus leading to decreased NOx and soot emissions. As a consequence of the dilution and enhanced mixing, the ratio between the mixing and chemical time scale is strongly reduced in MILD combustion, indicating the existence of very strong interactions between chemistry and fluid dynamics. In such a context, the use of combustion models that can accurately account for turbulent mixing and detailed chemical kinetics becomes mandatory.Combustion models for conventional flames usually rely on the assumption of time-scale separation (i.e. flamelets and related models), which constrain the thermochemical space accessible in the numerical simulation. Whilst the use of transported PDF methods appears still computationally prohibitive, especially for practical combustion systems, there are a number of closures showing promise for the inclusion of detailed kinetic mechanisms with affordable computational cost. They include the Partially Stirred Reactor (PaSR) approach and the Eddy Dissipation Concept (EDC) model.In order to assess these models under non-conventional MILD combustion conditions, several prototype burners were selected. They include the Adelaide and Delft jet-in-hot coflow (JHC) burners, and the Cabra lifted flames in vitiated coflow. Both Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES) were carried out on these burners under various operating conditions and with different fuels. The results indicate the need to explicitly account for both the mixing and chemical time scales in the combustion model formulation. The generalised models developed currently show excellent predictive capabilities when compared with the available, high-fidelity experimental data, especially in their LES formulations. The advanced approaches for the evaluation of the mixing and chemical time scale were compared to several conventional estimation methods, showing their superior performances and wider range of applications. Moreover, the PaSR approach was compared with the steady Flamelet Progress Variable (FPV) model on predicting the lifted Cabra flame, proving that the unsteady behaviours associated to flame extinction and re-ignition should be appropriately considered for such kind of flame.Because of the distributed reaction area, the reacting structures in MILD combustion can be potentially resolved on a Large Eddy Simulation (LES) grid. To investigate that, a comparative study benchmarking the LES predictions for the JHC burner obtained with the PaSR closure and two implicit combustion models was carried out, with the implicit models having filtered source terms coming directly from the Arrhenius expression. Theresults showed that the implicit models are very similar with the conventional PaSR model on predicting the flame properties, for what concerns the mean and root-mean-square of the temperature and species mass fraction fields.To alleviate the cost associated to the use of large kinetic mechanisms, chemistry reduction and tabulation methods to dynamically reduce their size were tested and benchmarked, allowing to allocate the computational resources only where needed. Finally, advanced post-processing tools based on the theory of Computational Singular Perturbation (CSP) were employed to improve the current understanding of flame-turbulence interactions under MILD conditions, confirming the important role of both autoignition and self propagation in these flames. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
5

Numerical Simulations of Reacting Flow in an Inductively Coupled Plasma Torch

Dougherty, Maximilian 01 January 2015 (has links)
In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities. A numerical model coupling finite rate chemical kinetics and high temperature thermodynamic and transport properties with a computational fluid dynamics flow solver has been developed to model the chemically reacting flow in the inductively coupled plasma torch facility at the University of Vermont. Simulations were performed modeling the plasma jet for hybrid oxygen-argon and nitrogen plasmas in order to validate the models developed in this work by comparison to experimentally-obtained data for temperature and relative species concentrations in the boundary layer above test articles. Surface boundary conditions for wall temperature and catalytic efficiency were utilized to represent the different test article materials used in the experimental facility. Good agreement between measured and computed data is observed. In addition, a code-to-code validation exercise was performed benchmarking the performance of the models developed in this dissertation by comparison to previously published results. Results obtained show good agreement for boundary layer temperature and species concentrations despite significant differences in the codes. Lastly, a series of simulations were performed investigating the effects of recombination reaction rates and pressure on the composition of a nitrogen plasma jet in chemical nonequilibrium in order to better understand the composition at the boundary layer edge above a test article. Results from this study suggest that, for typical test conditions, the boundary layer edge will be in a state of chemical nonequilibrium, leading to a nonequilibrium condition across the entire boundary layer for test article materials with high catalytic efficiencies.
6

Etude du développement d’une flamme soumise à un gradient de concentration : Rôle de la stratification et des EGR / Study of the development of flame kernel submited to a concentration gradient : role of stratification and egr

Gruselle, Catherine 22 January 2014 (has links)
La combustion stratifiée, qui consiste à brûler un mélange carburant/oxydant inhomogène, et la combustion diluée, consistant à ajouter une quantité limitée de gaz brûlés, sont deux technologies utilisées dans les moteurs à piston pour réduire leur consommation. Cette thèse est dédiée à l’étude de l’allumage dans ces deux types de milieux en régimes laminaire et turbulent. Un nouveau schéma cinétique pour la combustion propane/air a été dérivé et combiné à deux approches de modélisation différentes : la chimie complexe et une approche de chimie tabulée de type FPI. Dans le cas laminaire, les deux approches de modélisation donnent des résultats similaires et un modèle simple a mis en évidence l’importance de la dynamique des gaz frais et des gaz brûlés sur le développement du noyau. Dans le cas turbulent, plusieurs techniques d’analyse ont montré la dépendance de la vitesse absolue de la flamme au champ de vitesse moyen et la décorrélation des fluctuations locales de richesse. / Stratified combustion, which consists in burning an inhomogeneous fuel/air mixture, and diluted combustion, which consists in adding a limited quantity of burnt gases, are two technologies used in internal combustion engines to reduce fuel consumption. This Ph.D is devoted to the study of ignition in these two types of combustion in laminar and turbulent regimes. A new kinetic scheme for propane/air combustion has been derived and combined to two modeling approaches: finite-rate chemistry and an FPI tabulated chemistry approach. In the laminar case, both approaches give similar results and a simplified model has highlighted the importance of fresh and burnt gases dynamics on the kernel development. In the turbulent case, several techniques of analysis have shown the dependency of absolute flame speed on the mean fluid velocity and the lack of correlation to the local equivalence ratio.
7

Non-equilibrium Models for High Temperature Gas Flows

Andrienko, Daniil 07 August 2014 (has links)
No description available.

Page generated in 0.0718 seconds