• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computação paralela em GPU para resolução de sistemas de equações algébricas resultantes da aplicação do método de elementos finitos em eletromagnetismo. / Parallel computing on GPU for solving systems of algebraic equations resulting from application of finite element method in electromagnetism.

Camargos, Ana Flávia Peixoto de 04 August 2014 (has links)
Este trabalho apresenta a aplicação de técnicas de processamento paralelo na resolução de equações algébricas oriundas do Método de Elementos Finitos aplicado ao Eletromagnetismo, nos regimes estático e harmônico. As técnicas de programação paralelas utilizadas foram OpenMP, CUDA e GPUDirect, sendo esta última para as plataformas do tipo Multi-GPU. Os métodos iterativos abordados incluem aqueles do subespaço Krylov: Gradientes Conjugados, Gradientes Biconjugados, Conjugado Residual, Gradientes Biconjugados Estabilizados, Gradientes Conjugados para equações normais (CGNE e CGNR) e Gradientes Conjugados ao Quadrado. Todas as implementações fizeram uso das bibliotecas CUSP, CUSPARSE e CUBLAS. Para problemas estáticos, os seguintes pré-condicionadores foram adotados, todos eles com implementações paralelizadas e executadas na GPU: Decomposições Incompletas LU e de Cholesky, Multigrid Algébrico, Diagonal e Inversa Aproximada. Para os problemas harmônicos, apenas os dois primeiros pré-condicionadores foram utilizados, porém na sua versão sequencial, com execução na CPU, resultando em uma implementação híbrida CPU-GPU. As ferramentas computacionais desenvolvidas foram testadas na simulação de problemas de aterramento elétrico. No caso do regime harmônico, em que o fenômeno é regido pela Equação de Onda completa com perdas e não homogênea, a formulação adotada foi aquela em dois potenciais, A-V aresta-nodal. Em todas as situações, os aplicativos desenvolvidos para GPU apresentaram speedups apreciáveis, demonstrando a potencialidade dessa tecnologia para a simulação de problemas de larga escala na Engenharia Elétrica, com excelente relação custo-benefício. / This work presents the use of parallel processing techniques in Graphics Processing Units (GPU) for the solution of algebraic equations arising from the Finite Element modeling of electromagnetic phenomena, both in steadystate and time-harmonic regime. The techniques used were parallel programming OpenMP, CUDA and GPUDirect, the latter for those platforms of type Multi-GPU. The iterative methods discussed include those of the Krylov subspace: Conjugate Gradients, Bi-conjugate Gradients, Conjugate Residual, Bi-conjugate Gradients Stabilized, Conjugate Gradients for Normal Equations (CGNE and CGNR) and Conjugate Gradients Squared. All implementations have made use of CUSP, CUSPARSE and CUBLAS libraries. For the static problems, the following pre-conditioners were adopted, all with parallelized implementations and executed on the GPU: Incomplete decompositions, both LU and Cholesky, Algebraic Multigrid, Diagonal and Approximate Inverse. For the time-harmonic varying problems, only the first two pre-conditioners were used, but in their sequential version and running in the CPU, which yielded a hybrid CPU-GPU implementation. The developed computational tools were tested in the simulation of electrical grounding systems. In the case of the harmonic regime, in which the phenomenon is governed by the driven, lossy wave equation, the formulation adopted was that in two potential, the ungauged edge A-V formulation. In all cases, the developed GPU-based tools showed considerable speedups, showing that this is a promising technology for the simulation of large-scale Electrical Engineering problems, with excellent cost-benefit.
2

Computação paralela em GPU para resolução de sistemas de equações algébricas resultantes da aplicação do método de elementos finitos em eletromagnetismo. / Parallel computing on GPU for solving systems of algebraic equations resulting from application of finite element method in electromagnetism.

Ana Flávia Peixoto de Camargos 04 August 2014 (has links)
Este trabalho apresenta a aplicação de técnicas de processamento paralelo na resolução de equações algébricas oriundas do Método de Elementos Finitos aplicado ao Eletromagnetismo, nos regimes estático e harmônico. As técnicas de programação paralelas utilizadas foram OpenMP, CUDA e GPUDirect, sendo esta última para as plataformas do tipo Multi-GPU. Os métodos iterativos abordados incluem aqueles do subespaço Krylov: Gradientes Conjugados, Gradientes Biconjugados, Conjugado Residual, Gradientes Biconjugados Estabilizados, Gradientes Conjugados para equações normais (CGNE e CGNR) e Gradientes Conjugados ao Quadrado. Todas as implementações fizeram uso das bibliotecas CUSP, CUSPARSE e CUBLAS. Para problemas estáticos, os seguintes pré-condicionadores foram adotados, todos eles com implementações paralelizadas e executadas na GPU: Decomposições Incompletas LU e de Cholesky, Multigrid Algébrico, Diagonal e Inversa Aproximada. Para os problemas harmônicos, apenas os dois primeiros pré-condicionadores foram utilizados, porém na sua versão sequencial, com execução na CPU, resultando em uma implementação híbrida CPU-GPU. As ferramentas computacionais desenvolvidas foram testadas na simulação de problemas de aterramento elétrico. No caso do regime harmônico, em que o fenômeno é regido pela Equação de Onda completa com perdas e não homogênea, a formulação adotada foi aquela em dois potenciais, A-V aresta-nodal. Em todas as situações, os aplicativos desenvolvidos para GPU apresentaram speedups apreciáveis, demonstrando a potencialidade dessa tecnologia para a simulação de problemas de larga escala na Engenharia Elétrica, com excelente relação custo-benefício. / This work presents the use of parallel processing techniques in Graphics Processing Units (GPU) for the solution of algebraic equations arising from the Finite Element modeling of electromagnetic phenomena, both in steadystate and time-harmonic regime. The techniques used were parallel programming OpenMP, CUDA and GPUDirect, the latter for those platforms of type Multi-GPU. The iterative methods discussed include those of the Krylov subspace: Conjugate Gradients, Bi-conjugate Gradients, Conjugate Residual, Bi-conjugate Gradients Stabilized, Conjugate Gradients for Normal Equations (CGNE and CGNR) and Conjugate Gradients Squared. All implementations have made use of CUSP, CUSPARSE and CUBLAS libraries. For the static problems, the following pre-conditioners were adopted, all with parallelized implementations and executed on the GPU: Incomplete decompositions, both LU and Cholesky, Algebraic Multigrid, Diagonal and Approximate Inverse. For the time-harmonic varying problems, only the first two pre-conditioners were used, but in their sequential version and running in the CPU, which yielded a hybrid CPU-GPU implementation. The developed computational tools were tested in the simulation of electrical grounding systems. In the case of the harmonic regime, in which the phenomenon is governed by the driven, lossy wave equation, the formulation adopted was that in two potential, the ungauged edge A-V formulation. In all cases, the developed GPU-based tools showed considerable speedups, showing that this is a promising technology for the simulation of large-scale Electrical Engineering problems, with excellent cost-benefit.
3

Accuracy and reliability of non-linear finite element analysis for surgical simulation

Ma, Jiajie January 2006 (has links)
In this dissertation, the accuracy and reliability of non-linear finite element computations in application to surgical simulation is evaluated. The evaluation is performed through comparison between the experiment and finite element analysis of indentation of soft tissue phantom and human brain phantom. The evaluation is done in terms of the forces acting on the cylindrical Aluminium indenter and deformation of the phantoms due to these forces. The deformation of the phantoms is measured by tracking 3D motions of X-ray opaque markers implanted in the direct neighbourhood under the indenter using a custom-made biplane X-ray image intensifiers (XRII) system. The phantoms are made of Sylgard® 527 gel to simulate the hyperelastic constitutive behaviour of the brain tissue. The phantoms are prepared layer by layer to facilitate the implantation of the X-ray opaque markers. The modelling of soft tissue phantom indentation and human brain phantom indentation is performed using the ABAQUSTM/Standard finite element solver. Realistic geometry model of the human brain phantom obtained from Magnetic Resonance images is used. Specific constitutive properties of the phantom layers determined through uniaxial compression tests are used in the model. The models accurately predict the indentation force-displacement relations and marker displacements in both soft tissue phantom indentation and human brain phantom indentation. Good agreement between the experimental and modelling results verifies the reliability and accuracy of the finite element analysis techniques used in this study and confirms the predictive power of these techniques in application to surgical simulation.

Page generated in 0.107 seconds