Spelling suggestions: "subject:"firebrands"" "subject:"firebrand's""
1 |
Factors Affecting Heat Transfer from Firebrands and Firebrand Piles and the Ignition of Building MaterialsBearinger, Elias David 30 June 2021 (has links)
Firebrands, small pieces of burning vegetation or debris generated by fires, are one of the primary ways wildfires ignite structures. Due to their small size, firebrands can be carried several kilometers by high winds before landing on combustible surfaces such as decks or roofs and potentially igniting homes. Until recently, little has been known about the heat transfer capabilities of firebrands to the surfaces on which they land. Understanding the heat transfer from firebrands is an essential step in engineering for greater fire resilience.
In the first phase of this research, heat transfer from individual firebrands to horizontal surfaces was investigated using oak firebrands made from commercially available lumber. The firebrand shape, wind speed, and wind direction were varied to see how these variables affect the heat transfer. A method of inverse heat transfer analysis based on infrared thermographs was used to measure distributed heat fluxes from firebrands to the surfaces through time. This measurement technique provided spatial resolutions of < 0.5 mm, approximately 10 times higher than previous experiments in this field. Results showed that localized heat transfer was significantly higher than had previously been reported, reaching as high as 80 kW/m2 in some cases. It was also found that wind speed, wind direction, and firebrand shape all affected the heat transfer from individual firebrands.
Firebrands have also been shown to accumulate in piles on decks or roofs creating complex systems that have different ignition capabilities than individual firebrands. Potentially many factors could influence the heat transfer from firebrand piles including wood moisture content, wood type (hardwood or softwood), wood density, wood state (live, dead, or artificial), wind speed, pile mass, firebrand diameter, and firebrand length. The second phase of this research used the same method of high-resolution heat transfer measurement to assess which of these factors significantly impacted the heat transfer from firebrand piles. Design of experiments was used to develop the test matrices and a rigorous statistical framework was employed to evaluate results at the α=0.05 level. It was found that wind speed, firebrand length, and an interaction between firebrand length and diameter were important. Additionally, it was found that there was a difference between the heat transfer from piles made with artificial and real firebrands, suggesting that using dowels as surrogate firebrands may produce higher heat fluxes than expected from real firebrands. Pile mass did not appear to significantly impact the heat flux from firebrand piles.
The last phase of this research developed a simple engineering model to predict the ignition of common building materials by firebrand piles. The model used time-varying heat transfer data from firebrand pile tests and material properties developed by testing on select building materials in a cone calorimeter. The model predicted the surface temperature rise of the material due to an exposure heat flux with ignition being predicted when the surface temperature exceeded the ignition temperature of the material. The model was used to predict ignition for a number of pile/fuel combinations and experiments were run to validate the predictions. It was found that the model did an excellent job in predicting ignition for materials which did not melt.
Together this research provides an important step in understanding heat transfer from firebrands and firebrand piles, predicting ignition, and engineering for greater fire resilience. / Master of Science / Uncontrolled wildfires burning close to human civilizations result in hundreds of deaths, the destruction of thousands of structures, and billions of dollars in economic damages each year. One of the primary ways wildfires ignite structures is through firebrands: small pieces of burning vegetation or debris generated by the fire. These firebrands can be carried great distance by strong winds, eventually landing on decks or roofs and potentially igniting homes. Until recently, little has been known about the heat transfer from firebrands to the surfaces on which they land. Understanding firebrand heat transfer will allow building materials to be selected that are resistant to ignition by firebrands and reduce the number of structures destroyed by wildfires.
In the first phase of this research, heat transfer from individual firebrands was investigated. The firebrand shape, wind speed, and wind direction were varied to see how these variables affect the heat transfer. A high-resolution measurement technique was used, allowing heat transfer to be measured with approximately 10 times higher resolution than previous experiments. Results showed that localized heat transfer was significantly higher than had previously been reported and indicated that wind speed, wind direction, and firebrand shape all affected the heat transfer from individual firebrands.
Firebrands have also been shown to accumulate in piles on decks or roofs creating complex systems that have different ignition capabilities than individual firebrands. Potentially many factors could influence the heat transfer from firebrand piles including wood moisture content, wood type (hardwood or softwood), wood density, wood state (live, dead, or artificial), wind speed, pile mass, firebrand diameter, and firebrand length. It was found that wind speed, firebrand length, and an interaction between firebrand length and diameter were important. Additionally, it was found that there was a difference between the heat transfer from piles made with artificial and real firebrands.
The last phase of this research developed a simple engineering model to predict the ignition of common building materials by firebrand piles. The model used time-varying heat transfer data, and material properties developed by experimental testing. The model was used to predict ignition of select building materials with different firebrand piles, and experiments were run to validate the predictions. It was found that the model did an excellent job in predicting ignition for materials which did not melt.
|
2 |
Quantifying Burning, Heat Transfer, and Material Ignition of Smoldering Firebrand PilesWong, Steven 27 April 2023 (has links)
Wildfires pose a growing threat for communities along the wildland-urban interface (WUI) around the world driven by a changing climate and expanding urban areas. One of the primary mechanisms by which fires can spread in the WUI are firebrands, airborne embers capable of acting as ignition sources carried in the airstream. Many studies have been conducted on the generation and transport of firebrands, but limited work has been conducted to quantify the heat transfer of firebrand piles to surfaces. A series of three studies are presented here exploring the heat transfer, burning, and material ignition of firebrands. In the first study, the differences between firebrands from structure and vegetation sources was compared. It was found that an ash layer in the vegetation firebrands reduced the heat and mass transfer. In the second study, impact of the surface geometries that firebrands accumulate on was explored. It was found that wall and corner configurations reduced the heat transfer the most and caused piles to burn from the wall surfaces outwards. Flat plate and decking configurations had the highest heat flux due to the lack of flow obstruction. In the final study, a framework was developed for predicting the material ignition resistance reliability exposed to a smoldering firebrand pile. The exposure was based on empirical relations for the heat flux from piles as a function of pile height, porosity, and wind speed. Cone calorimeter data was used to generate material thermal and ignition properties. With these inputs, the framework was used to predict the potential for material ignition thus circumventing the need for costly firebrand tests. This collection of studies provides evidence of the factors that drive firebrand burning behavior and heat transfer and links those aspects to the potential for ignition of construction materials. / Doctor of Philosophy / Wildland-urban interface (WUI) fires pose a growing threat for communities around the world driven by a changing climate and expanding urban areas. A particularly dangerous way that fires can spread long distances is via firebrands, burning particles that splinter off of trees or buildings that can be blown long distances by the wind. These firebrands can land onto surfaces like buildings and ignite those surfaces, causing new fires called spot fires. The science behind how firebrands ignite new surfaces is not well-developed, and there is no broad tool that can be used to predict whether a material or a building will ignite given certain conditions. The research presented here aims to address that lack of understanding by approaching the problem systematically, breaking down the individual driving elements of firebrand burning. First, the difference in heat transfer and burning behavior between firebrands from structures and from vegetation was explored. Second, the impact of various surface geometries was explored. The surface geometry of where the firebrands accumulate also influences the heat transfer of the firebrands. Finally, a framework for predicting the material reliability of materials to firebrand exposure is presented. Experimental correlations for firebrand burning based on pile parameters were generated and used to predict the heat fluxes from piles. The framework used material ignition data from cone calorimeter experiments to predict how materials would respond under thermal exposure. The framework compares the predicted exposure with the material ignition data to calculate the reliability. This collection of studies provides insight on the many factors that drive firebrand burning behavior and heat transfer and links those aspects to the ignition of materials.
|
3 |
Ignition and Burning Behavior of Modern Fire Hazards: Firebrand Induced Ignition and Thermal Runaway of Lithium-Ion BatteriesKwon, Byoungchul 26 May 2023 (has links)
No description available.
|
Page generated in 0.0404 seconds