• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems

Helgason, Magnus Thor January 2000 (has links)
<p>Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.</p>
2

Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems

Helgason, Magnus Thor January 2000 (has links)
Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.
3

Loss Ratios of Different Scheduling Policies for Firm Real-time System : Analysis and Comparisons

Das, Sudipta January 2013 (has links) (PDF)
Firm real time system with Poisson arrival process, iid exponential service times and iid deadlines till the end of service of a job, operated under the First Come First Served (FCFS) scheduling policy is well studied. In this thesis, we present an exact theoretical analysis of a similar (M/M/1 + G queue) system with exact admission control (EAC). We provide an explicit expression for the steady state workload distribution. We use this solution to derive explicit expressions for the loss ratio and the sojourn time distribution. An exact theoretical analysis of the performance of an M/M/1 + G queue with preemptive deadlines till the end of service, operating under the Earliest Deadline First (EDF) scheduling policy, appears to be difficult, and only approximate formulas for the loss ratio are available in the literature. We present in this thesis similar approximate formulas for the loss ratio in the present of an exit control mechanism, which discards a job at the epoch of its getting the server if there is no chance of completing it. We refer to this exit control mechanism as the Early job Discarding Technique (EDT). Monte Carlo simulations of performance indicate that the maximum approximation error is reasonably small for a wide range of arrival rates and mean deadlines. Finally, we compare the loss ratios of the First Come First Served and the Earliest Deadline First scheduling policies with or without admission or exit control mechanism, as well as their counterparts with deterministic deadlines. The results include some formal equalities, inequalities and some counter-examples to establish non-existence of an order. A few relations involving loss ratios are posed as conjectures, and simulation results in support of these are reported. These results lead to a complete picture of dominance and non-dominance relations between pairs of scheduling policies, in terms of loss ratios.

Page generated in 0.0512 seconds