• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of legacy disturbance on functional connections between geomorphology and organic matter dynamics in mountain streams

Ruffing, Claire Marie January 1900 (has links)
Doctor of Philosophy / Department of Geography / Melinda Daniels / Geomorphic properties of streams are linked to ecosystem function through processes related to storage, transport, and other drivers regulating biogeochemical conditions. Disturbances altering the physical template of a stream are associated with cascading impacts on ecosystem function. However, few disturbances are studied at long time scales and so the legacy of such events and the implications for ecosystem structure and function are not well understood. This research investigates the role of historic tie-driving, a channel disturbance legacy, in shaping present-day stream channel conditions in the Rocky Mountain region and the associated implications for organic matter dynamics. Using a combination of geomorphic and riparian surveys, organic matter and vegetation sampling, and modeling, I show that components of mountain stream ecosystems have recovered from tie-driving at varying rates. First, I addressed how tie-driving has altered channel morphology and wood loading. Tie-driven streams are narrower, shallower, less rough, and have less wood than non-driven reference reaches. In a second study, I focused on differences in carbon storage within the stream and riparian area between tie-driven and non-driven streams. Carbon stored on the landscape represents a long-term component of the terrestrial carbon cycle and some, but not all, components have been impacted by tie-driving. Large instream wood, coarse downed wood, and fine downed wood were identified as carbon storage components that were significantly smaller in tie-driven stream-riparian corridors. Finally, I modeled whole stream ecosystem metabolism and tested whether abiotic drivers influenced variations in rates of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP). Results from this work suggest that rates of GPP were significantly different between tie-driven and non-driven streams and were partially explained by variations in light related to canopy structure. However, variations in ER and NEP were not significantly different between tie-driven and non-driven sites. Taken as a whole, this work shows that ecosystems bear the imprint of historic disturbances but individual ecosystem components recover at differing rates. Additionally, integrating stream hydro-geomorphic and ecological dynamics is an effective approach to understanding the impact of channel disturbances in shaping ecosystem function at a variety of spatial and temporal scales.
2

Fish community response to habitat alteration: impacts of sand dredging in the Kansas River

Fischer, Jason L. January 1900 (has links)
Master of Science / Department of Biology / Craig Paukert / In-stream dredging is a common practice in rivers worldwide that can affect fish and fish habitat. We investigated the magnitude of these alterations and their influence on the fish community of the Kansas River, a large sand bed river. Fishes were collected monthly from June 2010 to June 2011 in Edwardsville and Lawrence, KS from 12, 1-km reaches (three actively dredged, two historically dredged that have not been dredged in at least one month, and seven control reaches) with bottom trawls, seines, and electrofishing. Water depths and velocities were measured with an acoustic doppler current profiler and interpolated in ArcGIS at all 12 reaches. Actively dredged reaches had proportionally more deep water habitat (> 3 m) and lower velocity (< 0.15 m/s) near the river bed than control reaches (P < 0.01 and P = 0.04, respectively). However, the mean proportion of shallow water habitat (< 0.5 m), high velocities near the river bed (> 0.30 m/s), low velocity habitat (< 0.25 m/s), and high velocity habitat (> 0.75 m/s) were similar among all reach types (Ps > 0.05). A canonical correspondence analysis was used to characterize relationships among habitat variables, reach types (actively dredged, historically dredged, and control), and catch per unit effort (CPUE) of fishes in the Kansas River. Mean velocity and depth explained a significant amount of variation in species CPUE; however, reach type was not a significant factor for any of the gear types for any season. Our results show that dredging in Great Plains Rivers can increase depths, but alterations to fish community structure was not evident, likely because many of these fishes are adapted to a range of habitat conditions and are highly mobile.
3

Clustering Louisiana commercial fishery participants for the allocation of government disaster payment: the case of hurricanes Katrina and Rita

Ogunyinka, Ebenezer Oluwayomi January 1900 (has links)
Master of Science / Department of Statistics / John E. Boyer Jr / The purpose of this study is to evaluate the effectiveness of the methods used for allocating disaster funds to assist commercial fishery participants as a result of Hurricanes Katrina and Rita of 2005 and to examine alternative methods to aid in determining an efficient criterion for allocating public funds for fisheries assistance. The trip ticket data managed by the Louisiana Department of Wildlife and Fisheries were used and analyzed using a cluster analysis. Results from the clustering procedures show that commercial fishermen consist of seven clusters, while wholesale/retail seafood dealers consist of six clusters. The three tiers into which commercial fishermen were originally classified can be extended to at least eleven (11) clusters, made up of three (3) clusters in tier 1 and an equal number of clusters (4) clusters in tier 2 and tier 3. Similarly, the original three tiers of wholesale/retail seafood dealers can be reclassified into at least nine (9) clusters with two clusters in tier 1, four (4) clusters in tier 2 and three (3) clusters in tier 3. As a result of the clustering reclassifications, alternative compensation plans were developed for the commercial fishermen and wholesale/retail seafood dealers. These alternative compensation plans suggest a reallocation of disaster assistance funds among individual groups of fishermen and among individual groups of dealers. We finally recommend that alternative classification methods should always be considered in order to select the most efficient criterion for allocating public funds in the future.
4

Fish and invertebrate community response to flow magnitude in the Kansas River

Gerken, Joseph Edward January 1900 (has links)
Doctor of Philosophy / Department of Biology / Craig Paukert / River discharge influences fish and invertebrate communities and understanding how hydrologic variables contribute to fish and invertebrate composition can provide information for restoration and management. This study examines the relationship between several flow regime metrics that may influence fish and invertebrate community structure in large river systems such as the Kansas River. First, I examined how hydrology influences macroinvertebrate (drifting and benthic) density and fish communities before, during, and after flooding in both main and secondary channels. I found that drifting invertebrate density increased during flooding potentially providing increased prey opportunities for fishes. I also found that fluvial dependent and generalist fish species use inundated habitats more than fluvial specialists. My results suggest that the flux of water into inundated habitats supports a unique subset of invertebrate and fish communities of the main channel. Next, I examined the importance of lateral connectivity on fish and invertebrate composition by examining differences in seasonally and permanently inundated secondary channels in relation to main channel reaches. I found that drifting and benthic invertebrate assemblages and fish assemblages differed between seasonally inundated and permanently connected secondary channels. These results suggest that maintenance of diverse secondary channel connections is useful in preserving native biota in the Kansas River. Finally, I tested if hydrologic variables influenced recruitment of four native Kansas River fishes. I found that recruitment for two of the four fish species (flathead catfish, Pylodictis olivaris, and shovelnose sturgeon, Scaphirhynchus platorynchus) increased in high flow years. These results indicate that a natural and variable flow regime may be important for maintaining fish community structure in the Kansas River. The results of this study have implications for management strategies that include the use of high flows to provide a pulse of insect prey to the main channel for fishes, restoration of natural high and low flow variability as important to fish recruitment, and diversity in secondary channel connectivity (seasonal and permanently connected) that promotes unique fish and invertebrate communities.

Page generated in 0.1017 seconds