Spelling suggestions: "subject:"flame thickness"" "subject:"blame thickness""
1 |
Application de la diffusion Rayleigh induite par laser à la caractérisation des fronts de flamme laminaire de prémélange H2/CH4/Air et H2/CO/Air / Application of laser induced Rayleigh scattering to the characterization of H2/CH4/Air and H2/CO/Air premixed laminar flame frontsPonty, Ludovic 14 June 2011 (has links)
Ce travail de Thèse est consacré à la caractérisation de la structure thermique des fronts de flammelaminaire de prémélange H2/CH4/Air et H2/CO/Air pauvres. L’étude a été réalisée sur un brûleur à jets opposés, permettant de stabiliser des flammes planes stationnaires, dans des conditions quasi-adiabatiques, pour différentes conditions d’étirement. Un diagnostic de Vélocimétrie par Imagerie de Particule (PIV) et un diagnostic bidimensionnel de diffusion Rayleigh induite par laser ont été utilisés successivement pour étudier l’influence de la richesse, de la concentration en hydrogène dans le combustible et de l’étirement sur le profil de température normal au front de flamme. Trois grandeurs fondamentales ont été étudiées : la température des gaz brûlés, le gradient maximum de température et l’épaisseur de flamme au sens de Spalding. Une attention particulière a été portée à l’interprétation du signal Rayleigh. Ce dernier dépendant notamment de la composition du gaz qui évolue à travers le front de flamme. Dans ce travaille de thèse, cette évolution a été évaluée numériquement (simulations 1D : CANTERA et OPPDIF) puis prise en compte pour améliorer le traitement des données expérimentales. Les résultats expérimentaux couvrent une gamme de richesses s’étalant pour H2/CH4/Air et H2/CO/Air, respectivement de 0.6 à 0.8 et de 0.4 à 0.6. Les concentrations en hydrogène dans le combustible s’étalent respectivement de 0 à 50% et de 10 à 50%. Une comparaison systématique a été faite avec les résultats de simulation numérique 1D (OPPDIF). / This Thesis is devoted to the characterization of the thermal structure of H2/CH4/Air and H2/CO/Air laminar flames. Counterflow flame setup has been used to study planar flames in steady and near-adiabatic conditions. Particle Image Velocimetry and laser induced Rayleigh scattering diagnostics has been successively applied to characterize the influence of equivalent ratio, hydrogen concentration in fuel and stretch on the temperature profile normal to the flame front. Three fundamental characteristics have been studied: the burned gas temperature, the maximum temperature gradient and the flame thickness defined by Spalding. Particular attention has been brought to the interpretation of the Rayleigh signal. Indeed, Rayleigh scattering depends on the gas composition which evolves across the flame front. This evolution has been numerical evaluated in this work (1D simulation: CANTERA and OPPDIF) and taken into account to improve Rayleigh data processing. Experimental results have been obtained for lean flames: equivalent ratio spreads from 0.6 to 0.8 and from 0.4 to 0.6 respectively for H2/CH4/Air and H2/CO/Air flames. A wide range of hydrogen concentration has been studied: from 0 to 50% of hydrogen in fuel for H2/CH4/Air flames and from 10 to 50% of hydrogen in fuel for H2/CO/Air flames. Experimental and numerical (OPPDIF) results have been systematically confronted.
|
2 |
Measurements of the structure of turbulent premixed and stratified methane/air flamesSweeney, Mark January 2011 (has links)
The influence of stratification on the structure of turbulent methane/air combustion is investigated using experimental data from laboratory scale burners: a weakly turbulent slot burner, and a higher turbulence co-annular swirl burner. The degree of stratification can be controlled independently of the overall fuel/air flow rate. The resulting measurements of scalar and velocity fields provide detailed test cases for existing and emerging turbulent flame models, covering a range of u'/sL from 1 to 10, turbulence intensities from 5% to 60%, and stratification ratios from 1 to 3. Simultaneous Rayleigh/Raman/CO-LIF measurements of temperature and major species concentrations - CH4, CO2, CO, H2, H2O and O2 - along a line are used to investigate the structure of a series of flames in both the slot and swirl burners. Concurrent cross-planar OH-PLIF allows thermal gradients to be angle corrected to their three-dimensional values. Finally, non-reacting and reacting velocity fields complete the flame database. The behavior of major species concentrations in the slot and swirl burner with respect to temperature is found to agree well on the mean with unstrained premixed laminar flame calculations. Scalar means conditioned on stoichiometry also show good agreement, aside from hydrogen which is enhanced under stratified conditions. Surface density function and scalar dissipation are lower than calculated values in all cases, suggesting that turbulence-induced thickening dominates the effect of increased strain. Metrics commonly used to derive flame surface density (FSD) were investigated. FSD may be determined using a statistical method based on measurements of temperature and its gradient, or a geometric method based on 2D temperature or LIF imaging. A third metric, an extension of the geometric method, is proposed. Good agreement is observed between the three metrics. The current database provides the first detailed high resolution scalar measurements for premixed and stratified flames. The data analysis provides insight into the physics of stratification: for the flames considered, the effects of stratification appear to be surprisingly small compared to those of turbulence, even at significant stratification ratios. The datasets provide a means of validating current and future computational turbulent combustion models.
|
Page generated in 0.0557 seconds