• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical study of flame dynamics

Petchenko, Arkady January 2007 (has links)
Modern industrial society is based on combustion with ever increasing standards on the efficiency of burning. One of the main combustion characteristics is the burning rate, which is influenced by intrinsic flame instabilities, external turbulence and flame interaction with walls of combustor and sound waves. In the present work we started with the problem how to include combustion along the vortex axis into the general theory of turbulent burning. We demonstrated that the most representative geometry for such problem is a hypothetic “tube” with rotating gaseous mixture. We obtained that burning in a vortex is similar to the bubble motion in an effective acceleration field created by the centrifugal force. If the intensity of the vortex is rather high then the flame speed is determined mostly by the velocity of the bubble. The results obtained complement the renormalization theory of turbulent burning. Using the results on flame propagation along a vortex we calculated the turbulent flame velocity, compared it to the experiments and found rather good agreement. All experiments on turbulent combustion in tubes inevitably involve flame interaction with walls. In the present thesis flame propagation in the geometry of a tube with nonslip walls has been widely studied numerically and analytically. We obtained that in the case of an open tube flame interaction with nonslip walls leads to the oscillating regime of burning. The oscillations are accompanied by variations of the curved flame shape and the velocity of flame propagation. If flame propagates from the closed tube end, then the flame front accelerates with no limit until the detonation is triggered. The above results make a good advance in solving one of the most difficult problems of combustion theory, the problem of deflagration to detonation transition. We developed the analytical theory of accelerating flames and found good agreement with results of direct numerical simulations. Also we performed analytical and numerical studies of another mechanism of flame acceleration caused by initial conditions. The flame ignited at the axis of a tube acquires a “finger” shape and accelerates. Still, such acceleration takes place for a rather short time until the flame reaches the tube wall. In the case of flame propagating from the open tube end to the closed one the flame front oscillates and therefore generates acoustic waves. The acoustic waves reflected from the closed end distort the flame surface. When the frequency of acoustic mode between the flame front and the tube end comes in resonance with intrinsic flame oscillations the burning rate increases considerably and the flame front becomes violently corrugated.
2

Numerical Simulation of Flame-Vortex Interactions in Natural and Synthetic Gas Mixtures

Weiler, Justin D. 17 August 2004 (has links)
The interactions between laminar premixed flames and counter-rotating vortex pairs in natural and synthetic gas mixtures have been computationally investigated through the use of Direct Numerical Simulations and parallel processing. Using a computational model for premixed combustion, laminar flames are simulated for single- and two-component fuel mixtures of methane, carbon monoxide, and hydrogen. These laminar flames are forced to interact with superimposed laminar vortex pairs, which mimic the effects of a pulsed, two-dimensional slot-injection. The premixed flames are parameterized by their unstretched laminar flame speed, heat release, and flame thickness. The simulated vortices are of a fixed size (relative to the flame thickness) and are parameterized, solely, by their rotational velocity (relative to the flame speed). Strain rate and surface curvature measurements are made along the stretched flame surfaces to study the effects of additive syngas species (CO and H2) on lean methane-air flames. For flames that share the same unstretched laminar flame speed, heat release, and flame thickness, it is observed that the effects of carbon monoxide on methane-air mixtures are essentially negigible while the effects of hydrogen are quite substantial. The dynamics of stretched CH4/Air and CH4/CO/Air flames are nearly identical to one another for interactions with both strong and weak vortices. However, the CH4/H2/Air flames demonstrate a remarkable tendency toward surface area growth. Over comparable interaction periods, the flame surface area produced during interactions with CH4/H2/Air flames was found to be more than double that of the pure CH4/Air flames. Despite several obvious differences, all of the interactions revealed the same basic phenomena, including vortex breakdown and flame pinch-off (i.e. pocket formation). In general, the strain rate and surface curvature magnitudes were found to be lower for the CH4/H2/Air flames, and comparable between CH4/Air and CH4/CO/Air flames. Rates of flame stretching are not explicitely determined, but are, instead, addressed through observation of their individual components. Two different models are used to determine local displacement speed values. A discrepancy between practical and theoretical definitions of the displacement speed is evident based on the instantaneous results for CH4/Air and CH4/H2/Air flames interacting with weak and strong vortices.

Page generated in 0.5343 seconds