Spelling suggestions: "subject:"flash brought"" "subject:"flash drought""
1 |
Developing a flash drought indicator for the US Great PlainsYang, Ze, active 2013 30 October 2013 (has links)
Flash droughts refer to those droughts that intensify rapidly in spring and summer, coupled with a strong increase in summer extreme temperatures, such as those that occurred over Texas in 2011 and the Great Plains in 2012. Climate models failed to predict these flash droughts in 2011 and 2012 and are ambiguous in projecting their future changes, largely because of models’ weaknesses in predicting summer rainfall and soil moisture feedbacks. In contrast, climate models are more reliable in simulating changes of large‐scale circulation and temperatures during winter and spring seasons. Thus, we developed and tested a physical climate indicator of the risk of “flash” droughts in summer by using the large-scale circulation and land surface conditions in winter and spring based on observed relationships between these conditions and their underlying physical mechanisms established by previous observational studies and numerical model simulations.
My master research focuses on the spatial distribution of this indicator globally to see how broadly it could be applied. We also compare the different factors to see which one is the dominant contributor to drought in different area. We find that the indicator performs well at capturing the development and termination of a drought. There is much opportunity to develop and improve the indicator further. / text
|
2 |
Synoptic-Scale Atmospheric Conditions Associated with Flash Drought Initiation in Puerto Rico and the CaribbeanGingrich, Tyler Michael 26 May 2022 (has links)
While conventional drought has been studied for many years, new research focuses on different aspects and types of drought. Flash Drought is a relatively new area of research in drought literature, dating back to the last ten to twenty years in the United States. Flash drought in the Caribbean has received minimal attention from researchers, but it has been studied in the United States primarily because of the 2012 flash drought event over the Great Plains. This study focuses on flash drought events in Puerto Rico and the Caribbean. Because the rapid onset and intensity of flash drought can potentially cause more devastation without established prediction methods, this research seeks to understand the synoptic scale atmospheric drivers of flash drought events. Recent occurrences of a flash drought event in this region include the 2015 event in Puerto Rico, which resulted in water rationing and shortages for residents of the island (Mote et al., 2017). The primary goal of this study is to understand how flash drought initiates and propagates for Puerto Rico and the Caribbean using two definitions of flash drought. One definition is based on soil moisture deficit, and the second definition is based on the Evaporative Demand Drought Index (EDDI), an experimental drought monitoring tool. Results suggest that an anomalous convection and positive moisture event followed by negative moisture anomalies and persistent subsidence contribute to flash drought event initiation and propagation. Additionally, large scale flash drought events seem to be initiating more frequently, suggesting that the island is becoming more susceptible to the devastations of flash drought. / Master of Science / Drought in the United States is a well-known occurrence typically caused by high temperatures and low precipitation rates. States in the Western US like California, Arizona, Nevada, and more have been negatively impacted by persistent drought. These negative impacts include water rationing laws, struggling agricultural yield, and many days without precipitation. In recent years, it has been discovered that drought has a counterpart known as flash drought. Flash drought is to flash flooding as drought is to a floodplain. Floodplains are areas prone to persistent flooding, but flash flooding occurs in a matter of minutes or hours due to extremely intense precipitation and a lack of drainage for the water to leave. Flash drought is very similar to flash flooding due to the rapid onset and intensification. Flash drought has been studied for the United States in some cases, but there is very little known about flash drought in Puerto Rico and the Caribbean. This study seeks to understand how flash drought initiates and intensifies in Puerto Rico. Results of this study suggest that flash drought can initiate immediately after a large precipitation event that is followed by days without precipitation. Because of the amount of moisture after the precipitation, the atmosphere wants to evaporate that moisture back out. As more moisture is evaporated, the land becomes drier and drier, especially when there is no follow up precipitation. The lack of follow up precipitation is also explained in this study. It was found that following the big precipitation event, the atmosphere does not create more precipitation because of a persistent state of downward vertical motion. Upward vertical motion is needed for precipitation to occur, so the combination of downward vertical motion and dry air results in a flash drought event in Puerto Rico.
|
3 |
Understanding Flash Drought Spatial Extent, Duration, and Meteorological DriversKaniewski, Connie 01 September 2021 (has links)
Drought is conventionally known as a slow-developing natural hazard. In recent years, a subset of drought events characterized by rapid onset has been identified and deemed “flash” droughts. These flash droughts can result in rapid soil drying and rapid vegetation degradation making them damaging to agriculture and the economy, so it is essential to develop reliable early warning systems for flash drought events. This study aims to compare the climatology between flash and non-flash droughts across the Contiguous United States (CONUS) and regionally to identify key differences in the drought types to improve early warning. Flash drought is defined as a two- or more category degradation in the U.S. Drought Monitor (USDM) in 4 weeks or less. Potential evapotranspiration (PET), vapor pressure deficit (VPD), maximum temperature (Tmax), and minimum temperature (Tmin) from the Gridded Surface Meteorological Dataset (gridMET) were also analyzed for flash and non-flash drought. It was found that using this definition of flash drought, flash droughts are up to 70% more likely to occur than non-flash droughts over all of the CONUS except the west coast. The South and Southwest regions are more likely to have more frequent and longer flash drought events than the Northwest and Plains regions. This study concludes that PET and VPD are the most reliable variables for differentiating between a flash and non-flash drought event. Furthermore, flash drought is most prevalent and will be the most difficult to predict in the South and Southwest regions and easier to predict in the Northwest and Plains. Also, using a flash drought definition of a drop in two or more categories in the USDM may be too lenient. A narrower flash drought definition, such as a drop in two categories over a two- or three-week period, may be more reflective of the more damaging nature of flash drought events.
|
Page generated in 0.024 seconds