Spelling suggestions: "subject:"flat sheet"" "subject:"flat theet""
1 |
Effects of membrane structure and operational variables on membrane distillation performanceKaranikola, Vasiliki, Corral, Andrea F., Jiang, Hua, Sáez, A. Eduardo, Ela, Wendell P., Arnold, Robert G. January 2017 (has links)
A bench-scale, sweeping gas, flat-sheet Membrane Distillation (MD) unit was used to assess the importance of membrane architecture and operational variables to distillate production rate. Sweeping gas membrane distillation (SGMD) was simulated for various membrane characteristics (material, pore size, porosity and thickness), spacer dimensions and operating conditions (influent brine temperature, sweep gas flow rate and brine flow rate) based on coupled mass and energy balances. Model calibration was carried out using four membranes that differed in terms of material selection, effective pore size, thickness and porosity. Membrane tortuosity was the lone fitting parameter. Distillate fluxes and temperature profiles from experiments matched simulations over a wide range of operating conditions. Limitations to distillate production were then investigated via simulations, noting implications for MD design and operation. Under the majority of conditions investigated, membrane resistance to mass transport provided the primary limitation to water purification rate. The nominal or effective membrane pore size and the lumped parameter epsilon/delta tau (porosity divided by the product of membrane tortuosity and thickness) were primary determinants of membrane resistance to mass transport. Resistance to Knudsen diffusion dominated membrane resistance at pore diameters <0.3 mu m. At larger pore sizes, a combination of resistances to intra-pore molecular diffusion and convection across the gas-phase boundary layer determined mass transport resistance. Findings are restricted to the module design flow regimes considered in the modeling effort. Nevertheless, the value of performance simulation to membrane distillation design and operation is well illustrated.
|
2 |
Membrane Distillation: Parametric Studies and Numerical Simulations for Hollow Fiber and Flat Sheet MembranesKaranikola, Vasiliki January 2015 (has links)
Water scarcity is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. Water of impaired quality could be water of high salinity such as brackish groundwater. Traditionally, reverse osmosis (RO) would be chosen to desalinate the brackish groundwater, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies require enhanced expertise for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling temperature heat sources. When it is driven by solar energy it does not require highly concentrating collection devices, non-aqueous working fluids, or complex temperature control systems, nor does it require extensive operational expertise. Membrane Distillation (MD) applications, background and modeling efforts are discussed in the first part of this dissertation. Two main studies are presented in this document: Firstly, Sweeping Gas Membrane Distillation (SGMD) through a hollow fiber membrane was studied both experimentally and modeled mathematically to describe performance of SGMD and extend results to predict membrane module efficiency and secondly, SGMD through a flat sheet MD module to study the effect of membrane characteristics in combination with operational variables. A final study was conducted to examine the effect of mesh spacer insertion in flat sheet membrane module on the permeate water production.
|
3 |
Design, construction, and characterization of a test stand used to test filter mediaParsons, Adam W 13 May 2022 (has links)
Air filters are routinely used to remove various aerosols ranging from radioactive particles to airborne viruses. The overall performance of a filter may be simplified to consider only two main performance characteristics: 1) the efficiency at which particles are removed by the filter, and 2) the filter’s resistance to air flow. Per the DOE Nuclear Air Cleaning Handbook, HEPA filters require a minimum filter efficiency of 99.97% for particles 0.3 micrometers in diameter. Understanding how filters will perform with respect to time and mass loading is essential towards building more robust filters that operate more efficiently and safely. Analyzing the mechanics of the filter media will provide better direction towards design improvement by exploring the relationship between the pressure drop and loaded particle mass. This work summarizes the design, construction, and characterization of a testing apparatus intended to perform penetration and loading testing on various test medias with selected aerosols.
|
Page generated in 0.0368 seconds