• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 5
  • 1
  • Tagged with
  • 39
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics / 生体内での二光子励起光遺伝学操作法を目的とする フェルスター共鳴エネルギー移動に基づくフラボタンパク質光活性化技術の開発

Kinjo, Tomoaki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22301号 / 医博第4542号 / 新制||医||1040(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 椛島 健治, 教授 林 康紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

Dynamics and Mechanism of Short-Range Electron Transfer Reactions in Flavoproteins.

Kundu, Mainak 04 October 2019 (has links)
No description available.
23

Characterization of the genes and gene products of the acetate-activating enzymes and a novel iron-sulfur flavoprotein from Methanosarcina thermophila strain TM-1

Latimer, Matthew T. 20 October 2005 (has links)
The genes encoding the acetate kinase and phosphotransacetylase enzymes from <i>Methanosarcina thermophila</i> were isolated from a genomic library on a fifteen kilobase fragment The genes are located adjacent to one another, with the phosphotransacetylase gene (<i>pta</i>) directly upstream of the acetate kinase gene (<i>ack</i>). The two genes were sequenced, along with a third Open Reading Frame (designated <i>orfY</i>). The <i>orfY</i> gene appears to encode a novel protein whose physiological function has yet to be determined. / Ph. D.
24

Internal dynamics of flavoproteins studied by femtosecond spectroscopy / Dynamique interne des flavoprotéines étudiée par spectroscopie femtoseconde

Nag, Lipsa 10 December 2018 (has links)
La nature utilise des réactions de transfert de charge (TdC) dans de nombreuses fonctions biologiquesfaisant intervenir des cofacteurs à activité redox, comme les flavines (FAD et FMN). Le TdC dans les protéines s’effectue souvent par la formation d'intermédiaires radicalaires. Les acides aminés tyrosine(TyrOH) et tryptophane sont impliqués comme intermédiaires majeurs. Les radicaux tryptophanyle ont été caractérisés auparavant dans leurs formes protoné et déprotoné. Cependant, les radicaux tyrosyles n'ont été caractérisés que dans la forme neutre et on pensait qu'ils étaient formés par extraction électronique et déprotonation. Les intermédiaires à courte durée de vie sont souvent difficiles à observer dans les réactions biochimiques, mais peuvent être peuplés s'ils sont formés photochimiquement par de courtes impulsions.Nous avons caractérisé des intermédiaires dans des réactions non-fonctionnelles de TdC dans des flavoprotéines en utilisant la spectroscopie femtoseconde de fluorescence et d'absorption. Des états excités et produits formés dans le type sauvage et des formes mutantes de la flavo-enzyme méthyltransférase TrmFO de Thermus thermophilus ont été étudiés. Dans le site actif de cette enzyme, une tyrosine (Tyr343) est empilée sur le cycle isoalloxazine de la FAD, et une cystéine (Cys51) peut former un adduit avec la FAD très fluorescente. Dans le mutant C51A, la fluorescence du FADox est fortement quenchée par transfert d'électrons de la Tyr343 dans ~1 ps. L'état produit résultant présente une caractéristique spectrale distincte avec une forte bande d'absorption à ~490 nm, encore jamais associée à aucune espèce radicalaire, qui a été attribuée pour la première fois au cation radical de la Tyr343 (TyrOH•+). L’état FAD•-TyrOH•+, est de très courte durée car il retombe par recombinaison de charge en ~3 ps.. Cette étude démontre que- malgré le très bas pKa de TyrOH•+ -le transfert d’électrons à partir de la tyrosine peut avoir lieu sans transfert concomitant de proton.De plus, des expériences de photosélection par polarisation ont permi d’estimer, l’orientation du moment dipolaire de la nouvelle transition entre FADox et TyrOH•+ dans le TrmFO C51A à 31°±5°. Ce résultat évalue l'orientation du moment dipolaire au sein du cycle phénolique. La découverte de directions distinctes pour la bande de transition de la flavine excitée et la transition à 490 nm confirme leur origine dans différentes entités moléculaires.Sur la base des résultats de TrmFO, nous avons réexaminé la photochimie de la flavoprotéine modèle glucose oxydase (GOX). Ddes résidus de tryptophane et de tyrosine sont situés proche du FAD et l'évolution du photoproduit à l'échelle picosecondes est plus complexe. Des phases de déclin de l'état excité avec des constantes de temps de 1 et ~4 ps ont été observées, ainsi que des phases pour l'évolution de l'état produit de ~4 ps, ~37 ps et une phase plus longue. Un modèle complet de la séparation et de recombinaison des charges dans GOX impliquant, des radicaux de tyrosine et de tryptophane, ainsi que des différents états redox du FAD a été décrit. Les résultats pour les phases de 4 ps et de 37 ps mettent en évidence l’implication du radical TyrOH•+, avec des caractéristiques semblables au C51A TrmFO. Ce résultat explique des caractéristiques énigmatiques connues et indique l'implication de TyrOH•+ dans divers systèmes protéiques.A ce jour, seul le radical tyrosyle déprotoné TyrO• a été identifié comme intermédiaire fonctionnel dans plusieurs systèmes. La visualisation d'un radical TyrOH•+ dans TrmFO C51A et GOX suggère sa formation intermédiaire en tant que précurseur de TyrO• dans des réactions biochimiques fonctionnelles.Enfin, dans TrmFO, la construction de variantes spécifiques par mutagénèse dirigée a été initiée pour étudier la flexibilité du site actif en utilisant la vitesse de TdC comme marqueur conformationnel. D'autres travaux sont nécessaires pour poursuivre cette voie. / Nature employs charge transfer reactions in many biological functions. Redox-active cofactors like flavins (FAD and FMN) are often implicated in such reactions. Charge transfer in proteins often proceeds via formation of radical intermediates. The amino acid radicals of tyrosine (TyrOH) and tryptophan are thought to play important roles as intermediates in intra- and interprotein charge transfer reactions. Tryptophanyl radicals (both protonated cation and deprotonated neutral forms), had been characterized before. However, tyrosyl radicals had only been characterized in the neutral form, and were thought to be formed by concerted electron extraction and deprotonation of tyrosine. Short-lived intermediates are often difficult to observe in biochemical reactions, but may be populated when they can be photochemically formed using short light pulses.In this work, we have characterized intermediates in non-functional charge transfer reactions in flavoproteins using femtosecond time-resolved fluorescence and absorption spectroscopy. Excited states and product states formed in the wild type and mutant forms of the methyltransferase flavoenzyme TrmFO from Thermus thermophilus were investigated. In the TrmFO active site, a tyrosine (Tyr343), is closely stacked on the FAD isoalloxazine ring and a cysteine (Cys51) can form a highly fluorescent adduct with the FAD. In the mutant C51A, FADox fluorescence is strongly quenched by electron transfer from the Tyr343 in ~1ps. The resulting product state displayed a distinct spectral feature- a strong absorption band at ~490 nm unlike any previously characterized radical species. It was assigned to the radical cation of tyrosine (TyrOH•+) which had never been observed before. The FAD•-TyrOH•+ intermediate, is very short-lived as it decays in ~3ps, through charge recombination. As a general conclusion, despite the very low pKa of TyrOH•+, electron transfer from tyrosine can occur without concomitant proton transfer.Using polarization photoselection experiments, we estimated the dipole moment direction for this new transition. The resultant angle between the excited FADox transition and the probed TyrOH•+ transition in C51A TrmFO was 31º±5º. This result sets the orientation of the dipole moment of the transition in the molecular frame of the phenol ring. The finding of distinct directions for the excited FAD transition band and the 490 nm transition confirms their origin in different molecular entities.Following the results from TrmFO, we reinvestigated the photochemistry in the model flavoprotein glucose oxidase (GOX). Here, both tryptophan and tyrosine residues are located in the vicinity of FAD and the photoproduct evolution on the picosecond timescale is more complex. Distinct phases of excited state decay with time constants of 1ps and ~4ps were observed, as well as phases of ~4ps, ~37 ps and a longer-lives phase for product state evolution. Consequently, a comprehensive model for the involvement of radicals of tyrosine and tryptophan and, the different FAD redox states, in the light-induced charge separation and recombination in GOX was made. Partial involvement of the TyrOH•+ radical cation, spectrally similar to C51A TrmFO, was required for the 4 ps and 37 ps phases to account for the ensemble of data. This result explains previous enigmatic features and indicates the involvement of TyrOH•+ in a variety of protein systems.So far, only the deprotonated tyrosyl radical TyrO• had been observed as a functional intermediate in several systems. The visualization of protonated TyrOH•+ radical in TrmFO C51A and GOX suggests the possibility of its intermediate formation as a precursor of TyrO• in functional biochemical reactions.Finally, in TrmFO the construction of specific variants with site-directed mutagenesis was initiated to study active-site flexibility using electron transfer rates as conformational markers. Further experimental and modeling work is required to pursue this goal.
25

Investigação de facetas pró e antioxidantes de flavoproteínas de Xylella fastidiosa / Pro and antioxidant aspects of flavoproteins from Xylella fastidiosa

Pimenta, Marcela Valente 27 September 2012 (has links)
As flavoproteinas AhpF (Alquil Hidroperoxido Redutase subunidade F) e TrxR (Tiorredoxina Redutase) sao membros da familia piridina dissulfeto redutase e possuem atividade dissulfeto redutase as custas de NAD(P)H. A proteina TrxR e responsavel pela reducao de Tiorredoxina (Trx) que participa do ciclo catalitico de grande parte das enzimas da familia peroxirredoxina, alem de outras enzimas. AhpF e dedicada a reducao de AhpC, (Alquil Hidroperoxido Redutase subunidade C) uma peroxirredoxina exclusiva de bacterias, AhpC e AhpF juntas formam sistema AhpR (Alquil Hidroperoxido Redutase). AhpF possui dois dominios, Trx-like (N-terminal) e TrxR-like (C-terminal); sendo que a ultima possui alta similaridade de estrutura e sequencia a TrxR. De forma interessante AhpF possui atividade NADH-oxidase formadora de H2O2, enquanto TrxR nao possui. Provavelmente pequenas mudancas na sua estrutura contribuem para essa diferenca. A atividade NADH-oxidase esta presente em algumas flavoproteinas e esta geralmente centrada no anel de isoaloxazina do cofator FAD. Este anel quando no estado radicalar e chamado de semiquinona. A semiquinona pode estar protonada ou desprotonada, sendo que a ultima forma e relacionada com atividades oxidase e oxigenase de maneira geral, mas ainda nao existem regras claras a respeito da reatividade de flavoproteinas com o oxigenio. Para elucidar quais poderiam ser essas diferencas, nos clonamos os genes para as proteinas TrxR, AhpC e AhpF da bacteria fitopatogenica Xylella fastidiosa e os expressamos em Escherichia coli. Reconstituimos com sucesso o sistema AhpR in vitro, medindo o consumo de H2O2 na presenca de AhpC, AhpF e NADH atraves de eletrodos especificos para peroxido. Da mesma forma caracterizamos a atividade NADH-oxidase de AhpF medindo o consumo de oxigenio e a producao de peroxido de hidrogenio. Alem disso, demonstramos que a atividade NAD(P)H-oxidase e ausente em TrxR atraves de ensaios de consumo de NADH. A expressao de somente o dominio C-terminal de AhpF manteve a atividade NADH-oxidase como na proteina selvagem, levando a crer que sao diferencas no motivo TrxR-like que disparam a atividade NADH-oxidase. Analisando a sobreposicao de estruturas tridimensionais de AhpF e TrxR disponiveis no PDB em conjunto com o alinhamento de sequencia de aminoacidos destas proteinas em diferentes organismos, identificamos tres possiveis candidatos que poderiam estar envolvidos na atividade NADH-oxidase. Atraves de mutacao sitio dirigida, identificamos que a retirada do residuo de histidina entre o motivo CXXC de AhpF fez o mutante AhpF H347T apresentar metade da atividade especifica NADHoxidase. Da mesma forma a mutacao reversa em TrxR, adicionando o residuo de histidina no motivo CXXC levou a TrxR T142H apresentar uma atividade especifica significativamente maior que a TrxR selvagem. Os dados em conjunto sugerem que o residuo de histidina por sua natureza polar e relevante para a desprotonacao do anel de izoaloxazina do FAD, e a sua consequente reatividade com o oxigenio, sendo um fator importante para a atividade NADH-oxidase presente em AhpF / The flavoproteins AhpF (Alkylhydroperoxide reductase subunit F) and TrxR (Thioredoxin Reductase) are members of the nucleotide pyridine disulfide oxidoreductase family and possess disulfide reductase activity at the expense of NAD(P)H. The TrxR protein is responsible for the reduction of thioredoxin (Trx), which is used in the catalytic cycle of most peroxiredoxins, among other enzymes. AhpF is dedicated to reducing the bacterial peroxiredoxin AhpC, and together they form the AhpR system (Alkylhydroperoxide reductase system). AhpF has two domains, Trx-like (N-terminal) and TrxR-like (C-terminal); the latter has high of similarity to TrxR. Intriguingly, AhpF has an H2O2-forming NAD(P)H-dependent oxidase activity, while TrxR does not. Slight changes in the structures of these two enzymes probably account for this phenomenon. The NADH-oxidase activity is present in some flavoproteins and is generally centered in the isoalloxazine ring of the FAD cofactor. This ring in its radical state is called a semiquinone, which can be protonated or deprotonated. The deprotonated form is related to oxidase and oxygenase activities, but there are no clear rules as to the reactivity of flavoproteins and molecular oxygen. In order to elucidate these differences, we have cloned genes which code the proteins TrxR, AhpC and AhpF of the phytopathogenic bacteria Xylella fastidiosa and have expressed them in Escherichia coli. We have successfully reconstituted the AhpR system in vitro, measuring the H2O2 decrease in the presence of AhpC, AhpF and NADH, by using specific electrodes. We have similarly characterized the NADH-oxidase activity of AhpF by measuring the decrease in the levels of oxygen and the production of hydrogen peroxide. Furthermore, through assays measuring the consumption of NADH, we have demonstrated that the NAD(P)H-oxidase activity is non-existent in TrxR. The expression of only the C-terminal domain of AhpF showed NADH-oxidase activity similar to the wild-type protein, which indicated that the NADH-oxidase activity occurs due to differences in the TrxR-like motif. By analyzing the superposition of the threedimensional structures of AhpF and TrxR, as well as the alignment of their amino acid sequence in different organisms, we identified three possible candidates which could be involved in NADH-oxidase activity. Through site-directed mutation, we found that the removal of the histidine residue within the CXXC motif of AhpF caused the mutant AhpF H347T to present half of the NADH-oxidase specific activity, when compared to the wild-type protein. Likewise, the reverse mutation in TrxR, adding the histidine residue to the CXXC motif, caused TrxR T142H to have a significantly higher specific activity when compared to the wild-type TrxR. The data suggests that, because of its polar nature, the histidine residue is relevant to the deprotonation of the isoalloxazine ring of FAD and its reactivity to oxygen, and, therefore, is an important factor to the NADHoxidase activity of AhpF
26

Inactivation of Choline Oxidase by Irreversible Inhibitors or Storage Conditions

Hoang, Jane Vu 03 August 2006 (has links)
Choline oxidase from Arthrobacter globiformis is a flavin-dependent enzyme that catalyzes the oxidation of choline to betaine aldehyde through two sequential hydride-transfer steps. The study of this enzyme is of importance to the understanding of glycine betaine biosynthesis found in pathogenic bacterial or economic relevant crop plants as a response to temperature and salt stress in adverse environment. In this study, chemical modification of choline oxidase using two irreversible inhibitors, tetranitromethane and phenylhydrazine, was performed in order to gain insights into the active site structure of the enzyme. Choline oxidase can also be inactivated irreversibly by freezing in 20 mM sodium phosphate and 20 mM sodium pyrophosphate at pH 6 and -20 oC. The results showed that enzyme inactivation was due to a localized conformational change associated with the ionization of a group in close proximity to the flavin cofactor and led to a complete lost of catalytic activity.
27

On the Preorganization of the Active Site of Choline Oxidase for Hydride Transfer and Tunneling Mechanism

Quaye, Osbourne 23 June 2009 (has links)
Choline oxidase catalyzes the two-step oxidation of choline to glycine betaine, one of limited osmoprotectants, with the formation of betaine aldehyde as an enzyme bound intermediate. Glycine betaine accumulates in the cytoplasm of plants and bacteria as a defensive mechanism to withstand hyperosmolarity and elevated temperatures. This makes the genetic engineering of relevant plants which lack the property of salt accumulation of economic interest, and the biosynthetic pathway of the osmolyte a potential drug target in microbial infections. The reaction of alcohol oxidation occurs via a hydride ion tunneling transfer from the substrate donor to a flavin acceptor within a highly preorganized active site environment in which choline and FAD are in a rigidly close proximity. In this dissertation, factors contributing to the enzyme-substrate preorganization which is required for the hydride ion tunneling reaction mechanism in choline oxidase have been investigated. Crystallographic studies of wild-type choline oxidase revealed a covalent linkage between C8M atom of the FAD isoalloxazine ring and the N(3) atom of the side chain of a histidine at position 99, and a solvent excluded cavity in the substrate binding domain containing glutamic acid at position 312 as the only negatively charged amino acid residue in the active site of the enzyme. The role of the histidine residue and the contribution of the 8á-N(3)-histidyl covalent linkage of the flavin cofactor to the reaction of alcohol oxidation was investigated in a variant form of choline oxidase in which the histidine residue was replaced with an asparagine. The role of the glutamate residue and the importance of the spatial location of the negative charge at position 312 was investigated in variant forms of choline oxidase in which the negatively charged residue was replaced with glutamine and aspartate. Mechanistic data obtained for the variant enzymes and their comparison to previous data obtained for wild-type choline oxidase are consistent with the residues at positions 99 and 312 being important for relative positioning of the hydride ion donor and acceptor. The residues are important for the enzyme-substrate preorganization that is required for the hydride tunneling reaction in choline oxidase.
28

Crystal Structures of Nitroalkane Oxidase: Insights into the Structural Basis for Substrate Specificity and the Catalytic Mechanism

Nagpal, Akanksha 19 July 2005 (has links)
Nitrochemicals are widely used as explosives, biocides and drugs. In addition, 3-nitro-tyrosine and other nitrated protein residues are important markers for many cardiovascular, neurodegenerative, and malignant conditions. Because of the wide presence of the nitrocompounds as toxins, potential nitrogen/carbon sources, and metabolic intermediates, different organisms have evolved to produce enzymes that can biodegrade nitrocompounds. The structural studies of the enzymes, which catalyze the removal of nitro group from nitrochemicals, are of considerable interest for both applied and fundamental reasons. The insights into the reaction mechanism of these enzymes can be used for designing efficient biocatalysts for bioremediation and for developing antibiotics for disease resistant microbes. Nitroalkane oxidase (NAO) produced by
29

The crystal structures of xenobiotic reductase A and B from pseudomonas putida II-B and pseudomonas fluorescens I-C: structural insight into regiospecific reactions with nitrocompounds

Manning, Linda 28 November 2005 (has links)
Nitrochemicals are currently widely used as solvents, drugs, biocides, fuels and explosives and are consequently widely distributed in the environment. The reductive nitrite elimination from explosive compounds is catalyzed by two FMN-dependent, xenobiotic reductases (XenA or XenB). These genes for these regiospecific enzymes were cloned from Pseudomonas putida and P. fluorescens I-C respectively and isolated from the soil of a contaminated World War II munitions manufacturing plant. These enzymes enable the microbes to fulfill their nitrogen requirements from nitroglycerin by catalyzing the regiospecific, NADPH dependent, reductive denitration of nitroglycerin with differing selectivities. The two enzymes also transform a number of additional nitrocompounds in vitro, e.g. TNT and metronidazole, a leading drug in the treatment of Helicobacter pylori, a causative agent of human ulcers. Single crystals were obtained for XenA and XenB and complete X-ray diffraction datasets have been collected and analyzed to better understand these characteristics. The 1.6 Å resolution structure of XenA reveals a dimer of β/α)₈-TIM barrels, but the 2.3 Å resolution structure for XenB is a monomer. The (β/α)₈-TIM barrel protein fold is the most common fold in the PDB. However, the XenA structure exhibits a unique, C-terminal domain-swapped topology. Thus a portion of each active site is comprised of residues from the neighboring monomer. To probe the reaction cycle, crystal structures of ligand complexes and the reduced enzyme have been refined. For example, our structure of the XenA-metronidazole complex shows that ligands bind parallel to the FMN si-face. Our 1.5 Å resolution structure for reduced XenA reveals an FMN isoalloxazine ring with an angle of ~165° along the N5-N10 axis. We have also generated models of the reduced enzyme-nitroglycerin complexes by molecular dynamics. The results with both XenA and XenB reveal differences in enzyme-ligand hydrogen bonding. These differences correlate remarkably well with the regiospecific differences observed for nitrite elimination from nitroglycerin and reduction of TNT by the two enzymes.
30

Investigação de facetas pró e antioxidantes de flavoproteínas de Xylella fastidiosa / Pro and antioxidant aspects of flavoproteins from Xylella fastidiosa

Marcela Valente Pimenta 27 September 2012 (has links)
As flavoproteinas AhpF (Alquil Hidroperoxido Redutase subunidade F) e TrxR (Tiorredoxina Redutase) sao membros da familia piridina dissulfeto redutase e possuem atividade dissulfeto redutase as custas de NAD(P)H. A proteina TrxR e responsavel pela reducao de Tiorredoxina (Trx) que participa do ciclo catalitico de grande parte das enzimas da familia peroxirredoxina, alem de outras enzimas. AhpF e dedicada a reducao de AhpC, (Alquil Hidroperoxido Redutase subunidade C) uma peroxirredoxina exclusiva de bacterias, AhpC e AhpF juntas formam sistema AhpR (Alquil Hidroperoxido Redutase). AhpF possui dois dominios, Trx-like (N-terminal) e TrxR-like (C-terminal); sendo que a ultima possui alta similaridade de estrutura e sequencia a TrxR. De forma interessante AhpF possui atividade NADH-oxidase formadora de H2O2, enquanto TrxR nao possui. Provavelmente pequenas mudancas na sua estrutura contribuem para essa diferenca. A atividade NADH-oxidase esta presente em algumas flavoproteinas e esta geralmente centrada no anel de isoaloxazina do cofator FAD. Este anel quando no estado radicalar e chamado de semiquinona. A semiquinona pode estar protonada ou desprotonada, sendo que a ultima forma e relacionada com atividades oxidase e oxigenase de maneira geral, mas ainda nao existem regras claras a respeito da reatividade de flavoproteinas com o oxigenio. Para elucidar quais poderiam ser essas diferencas, nos clonamos os genes para as proteinas TrxR, AhpC e AhpF da bacteria fitopatogenica Xylella fastidiosa e os expressamos em Escherichia coli. Reconstituimos com sucesso o sistema AhpR in vitro, medindo o consumo de H2O2 na presenca de AhpC, AhpF e NADH atraves de eletrodos especificos para peroxido. Da mesma forma caracterizamos a atividade NADH-oxidase de AhpF medindo o consumo de oxigenio e a producao de peroxido de hidrogenio. Alem disso, demonstramos que a atividade NAD(P)H-oxidase e ausente em TrxR atraves de ensaios de consumo de NADH. A expressao de somente o dominio C-terminal de AhpF manteve a atividade NADH-oxidase como na proteina selvagem, levando a crer que sao diferencas no motivo TrxR-like que disparam a atividade NADH-oxidase. Analisando a sobreposicao de estruturas tridimensionais de AhpF e TrxR disponiveis no PDB em conjunto com o alinhamento de sequencia de aminoacidos destas proteinas em diferentes organismos, identificamos tres possiveis candidatos que poderiam estar envolvidos na atividade NADH-oxidase. Atraves de mutacao sitio dirigida, identificamos que a retirada do residuo de histidina entre o motivo CXXC de AhpF fez o mutante AhpF H347T apresentar metade da atividade especifica NADHoxidase. Da mesma forma a mutacao reversa em TrxR, adicionando o residuo de histidina no motivo CXXC levou a TrxR T142H apresentar uma atividade especifica significativamente maior que a TrxR selvagem. Os dados em conjunto sugerem que o residuo de histidina por sua natureza polar e relevante para a desprotonacao do anel de izoaloxazina do FAD, e a sua consequente reatividade com o oxigenio, sendo um fator importante para a atividade NADH-oxidase presente em AhpF / The flavoproteins AhpF (Alkylhydroperoxide reductase subunit F) and TrxR (Thioredoxin Reductase) are members of the nucleotide pyridine disulfide oxidoreductase family and possess disulfide reductase activity at the expense of NAD(P)H. The TrxR protein is responsible for the reduction of thioredoxin (Trx), which is used in the catalytic cycle of most peroxiredoxins, among other enzymes. AhpF is dedicated to reducing the bacterial peroxiredoxin AhpC, and together they form the AhpR system (Alkylhydroperoxide reductase system). AhpF has two domains, Trx-like (N-terminal) and TrxR-like (C-terminal); the latter has high of similarity to TrxR. Intriguingly, AhpF has an H2O2-forming NAD(P)H-dependent oxidase activity, while TrxR does not. Slight changes in the structures of these two enzymes probably account for this phenomenon. The NADH-oxidase activity is present in some flavoproteins and is generally centered in the isoalloxazine ring of the FAD cofactor. This ring in its radical state is called a semiquinone, which can be protonated or deprotonated. The deprotonated form is related to oxidase and oxygenase activities, but there are no clear rules as to the reactivity of flavoproteins and molecular oxygen. In order to elucidate these differences, we have cloned genes which code the proteins TrxR, AhpC and AhpF of the phytopathogenic bacteria Xylella fastidiosa and have expressed them in Escherichia coli. We have successfully reconstituted the AhpR system in vitro, measuring the H2O2 decrease in the presence of AhpC, AhpF and NADH, by using specific electrodes. We have similarly characterized the NADH-oxidase activity of AhpF by measuring the decrease in the levels of oxygen and the production of hydrogen peroxide. Furthermore, through assays measuring the consumption of NADH, we have demonstrated that the NAD(P)H-oxidase activity is non-existent in TrxR. The expression of only the C-terminal domain of AhpF showed NADH-oxidase activity similar to the wild-type protein, which indicated that the NADH-oxidase activity occurs due to differences in the TrxR-like motif. By analyzing the superposition of the threedimensional structures of AhpF and TrxR, as well as the alignment of their amino acid sequence in different organisms, we identified three possible candidates which could be involved in NADH-oxidase activity. Through site-directed mutation, we found that the removal of the histidine residue within the CXXC motif of AhpF caused the mutant AhpF H347T to present half of the NADH-oxidase specific activity, when compared to the wild-type protein. Likewise, the reverse mutation in TrxR, adding the histidine residue to the CXXC motif, caused TrxR T142H to have a significantly higher specific activity when compared to the wild-type TrxR. The data suggests that, because of its polar nature, the histidine residue is relevant to the deprotonation of the isoalloxazine ring of FAD and its reactivity to oxygen, and, therefore, is an important factor to the NADHoxidase activity of AhpF

Page generated in 0.0592 seconds