• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tactical and operational planning for per-seat, on-demand air transportation

Keysan, Gizem. January 2009 (has links)
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2009. / Committee Co-Chair: George L. Nemhauser; Committee Co-Chair: Martin W. P. Savelsbergh; Committee Member: Bruce K. Sawhill; Committee Member: Joel Sokol; Committee Member: Ozlem Ergun. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Tactical and operational planning for per-seat, on-demand air transportation

Keysan, Gizem 29 May 2009 (has links)
This thesis addresses two planning problems motivated by the operations of PSOD air transportation: scheduled maintenance planning, and base location and fleet allocation. In the first part of the thesis, we study tactical planning for scheduled maintenance which determines the daily maintenance capacities for two operating conditions: a growth phase and the steady state. We model tactical maintenance capacity planning during the growth phase as an integer program and develop an optimization-based local search to solve the problem. Tactical planning of steady state maintenance capacity concerns a special case for which we determine the optimal and the long run capacities with a pseudo-polynomial time algorithm. In the second part of the thesis, we address operational planning for scheduled maintenance which is concerned with assigning itineraries to jets and determining the specific jets to be scheduled for maintenance on a daily basis given a certain maintenance capacity. We present a solution methodology that employs a look-ahead approach to consider the impact of our current decisions on the future and decomposes the problem exploiting the differences between jets with respect to the proximity to their next maintenance. We further develop an integrated framework in order to capture the interaction between operational level maintenance decisions and flight scheduling. In the third and final part of the thesis, we present the tactical level base location and fleet allocation problem. As PSOD air transportation experiences changes in travel demand and fleet size, decisions regarding where to open new bases and how to allocate the number of jets among the bases are made. We first present a solution approach in which high level information about flight scheduling is used in a traditional facility location problem. We next develop a model that works directly with transportation requests and integrates a simplified version of flight scheduling with the base location and fleet allocation decisions in order to capture more detail.

Page generated in 0.0504 seconds