• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magneto-sensitive rubber in the audible frequency range

Blom, Peter January 2006 (has links)
The dynamic behaviour in the audible frequency range of magneto-sensitive (MS) rubber is the focus of this thesis consisting of five papers A-E. Paper A presents results drawn from experiments on samples subjected to different constant shear strains over varying frequencies and magnetic fields. Main features observed are the existence of an amplitude dependence of the shear modulus referred to as the Fletcher-Gent effect for even small displacements, and the appearance of large MS effects. These results are subsequently used in Paper B and C to model two magneto-sensitive rubber isolators, serving to demonstrate how, effectively, by means of MS rubber, these can be readily improved. The first model calculates the transfer stiffness of a torsionally excited isolator, and the second one, the energy flow into the foundation for a bushing inserted between a vibrating mass and an infinite plate. In both examples, notable improvements in isolation are obtainable. Paper D presents a non-linear constitutive model of MS rubber in the audible frequency range. Characteristics inherent to magneto-sensitive rubber within this dynamic regime are defined: magnetic sensitivity, amplitude dependence, elasticity and viscoelasticity. A very good agreement with experimental values is obtained. In Paper E, the magneto-sensitive rubber bushing stiffness for varying degrees of magnetization is predicted by incorporating the non-linear magneto-sensitive audio frequency rubber model developed in Paper D, into an effective engineering formula for the torsional stiffness of a rubber bushing. The results predict, and clearly display, the possibility of controlling over a large range through the application of a magnetic field, the magneto-sensitive rubber bushing stiffness. / QC 20100816
2

Modelling of the Fletcher-Gent effect and obtaining hyperelastic parameters for filled elastomers

Österlöf, Rickard January 2014 (has links)
The strain amplitude dependency , i.e. the Fletcher-Gent effect and Payne effect, and the strain rate dependency of rubber with reinforcing fillers is modelled using a modified boundary surface model and implemented uniaxially. In this thesis, a split of strain instead of stress is utilized, and the storage and loss modulus are captured over two decades of both strain amplitudes and frequencies. In addition, experimental results from bimodal excitation are replicated well, even though material parameters were obtained solely from harmonic excitation. These results are encouraging since the superposition principle is not valid for filled rubber, and real-life operational conditions in general contain several harmonics. This means that formulating constitutive equations in the frequency domain is a cumbersome task, and therefore the derived model is implemented in the time domain. Filled rubber is used irreplaceable in several engineering solutions, such as tires, bushings, vibrations isolators, seals and tread belts, to name just a few. In certain applications, it is sufficient to model the elastic properties of a component during finite strains. However, Hooke’s law is inadequate for this task. Instead, hyperelastic material models are used. Finally, the thesis presents a methodology for obtaining the required material parameters utilizing experiments in pure shear, uniaxial tension and the inflation of a rubber membrane. It is argued that the unloading curve rather than the loading curve is more suitable for obtaining these parameters, even at very low strain rates. / <p>QC 20140917</p>

Page generated in 0.057 seconds