• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Characterization of Highly Sensitive Polysilicon Material Deposited on Ultra-thin Flexible Glass for Temperature Sensing

Quintana, Juan M. January 2020 (has links)
No description available.
2

Navigating Extremes: Advancing 3D-IC with Flexible Glass for Harsh Environments

Joo Min Kim (18838408) 17 June 2024 (has links)
<p dir="ltr">The rapid evolution of semiconductor technology, driven by the limitations of Moore's Law, necessitates innovative approaches to enhance device performance and miniaturization. This thesis explores the advancement of three-dimensional integrated circuits (3D-ICs) using flexible glass-based substrates, focusing on their application in extreme environments. Flexible glass emerges as a promising material for 3D-IC packaging due to its superior electrical insulation, thermal stability, chemical resistance, and mechanical strength. These properties are critical for maintaining device reliability and functionality under harsh conditions such as high temperatures, humidity, and radiation. Their unique properties make them particularly suited for applications in aerospace, military, and automotive industries, where electronics must endure severe operational environments. The research presented in this thesis provides a comprehensive examination of the processes involved in fabricating flexible glass-based 3D-ICs, detailing methodologies for integrating semiconductor components onto a flexible glass substrate using common platform technology (CPT). This approach ensures compatibility across diverse systems and enhances the scalability and cost-effectiveness of 3D-IC solutions. Experimental results indicate that 3D-ICs incorporating flexible glass substrates exhibit enhanced functionality and durability. This study underscores the transformative potential of flexible glass in revolutionizing the design and performance of future electronic systems, ensuring their operability and longevity in demanding settings. By addressing the challenges of traditional packaging materials, flexible glass represents a significant advancement in 3D-IC technology, promising to broaden the operational landscape of electronic devices and change how they are deployed across various high-stakes fields.</p>
3

Roll-to-roll sputtering of thermochromic VO2-based coatings onto ultra-thin flexible glass

Szelwicka, Jolanta 14 March 2024 (has links)
Thermochromic vanadium dioxide based materials undergo a metal-to-semiconductor transition. This ability can reduce the energy consumption in buildings with windows or glass facades, especially for passive cooling in warmer climates. In dependence on the temperature, the transmittance of the material for infrared light changes reversibly, regulating the amount of the solar heat transmitted into buildings. Although thermochromic vanadium dioxide based coatings have been extensively studied at laboratory scale, there are still fundamental challenges for industrial manufacturing. The present work aims to explore the prospects of the deposition of a tungsten-doped vanadium dioxide based coating onto ultra-thin glass in an upscaled roll-to-roll process. An existing laboratory scale layer stack design enabled the achievement of high performance using unipolar pulsed and high power impulse magnetron sputtering. For this purpose, a new oxygen control system was developed. Furthermore, the optical and structural properties of the deposited coatings were characterized, as well as the doping content, and further the potential for energy savings. A newly designed optical model allowed calculation of the dispersion relation of the layers and their electrical properties.:1 Introduction 1 2 Topic of the thesis 4 3 State of the art 6 3.1 Thermochromism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Vanadium dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.1 Crystalline Structure . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 Phase transition – Band structure . . . . . . . . . . . . . . . . . . 12 3.2.3 Literature review of thermochromic VO2 coatings . . . . . . . . . 13 3.2.4 Limitations of VO2 in smart window applications . . . . . . . . . 14 3.2.5 Using multifunctional layers . . . . . . . . . . . . . . . . . . . . . 15 3.2.6 Reducing the transition temperature . . . . . . . . . . . . . . . . 15 3.3 Magnetron sputtering of thermochromic coatings . . . . . . . . . . . . . 17 3.3.1 Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Reactive magnetron sputtering . . . . . . . . . . . . . . . . . . . 22 3.3.4 Sputtering using multi-component targets . . . . . . . . . . . . . 24 3.3.5 Pulsed magnetron sputtering . . . . . . . . . . . . . . . . . . . . . 26 3.3.6 High-power impulse magnetron sputtering . . . . . . . . . . . . . 27 3.4 Layer growth and ion assistance . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Thin film optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5.1 Interaction of light with surfaces . . . . . . . . . . . . . . . . . . . 34 3.5.2 Models for thin film optics . . . . . . . . . . . . . . . . . . . . . . 36 4 Methodology 39 4.1 Deposition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 Roll-to-roll process . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 FOSA labX 330 Glass . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.3 Rotatable magnetrons . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.4 Materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.5 Oxygen flow controls . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.6 Challenges of the roll-to-roll deposition process on UTG . . . . . 46 4.2 Deposition of ZrO2 multifunctional layer . . . . . . . . . . . . . . . . . . 47 4.3 Deposition of ZrO2/V1-xWxO2/ZrO2 with HiPIMS . . . . . . . . . . . . . 48 4.3.1 The investigation of the effect of oxygen partial pressure . . . . . 48 4.3.2 Deposition of thermochromic layers with optical emission spec- troscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Deposition of ZrO2/V1-xWxO2/ZrO2 with unipolar pulsed magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Coating characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.1 UV-Vis-NIR spectrophotometry . . . . . . . . . . . . . . . . . . . 51 4.5.2 Determination of the film properties with optical modelling . . . . 52 4.5.3 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . . 55 4.6 Determination of the film thickness . . . . . . . . . . . . . . . . . . . . . 55 4.6.1 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6.3 Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . 58 4.6.4 Rutherford backscattering . . . . . . . . . . . . . . . . . . . . . . 59 5 Results and discussion 61 5.1 Bottom and top ZrO2 layers for thermochromic V1-xWxO2 coating . . . . 61 5.2 Process design for the deposition of thermochromic V1-xWxO2 coating with HiPIMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 The effect of oxygen partial pressure . . . . . . . . . . . . . . . . 70 5.2.2 Deposition of the layer system with optical emission spectroscopy 72 5.2.3 Determination of the W content in the thermochromic films . . . 80 5.2.4 Resistivity measurements and structure assumption . . . . . . . . 86 5.2.5 Dependence of the doping concentration in the target on the film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.6 Influence of the deposition temperature on the thermochromic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.7 Influence of the film thickness on the thermochromic properties . 90 5.3 Thermochromic V1-xWxO2 coating deposited with uPMS . . . . . . . . . 93 5.4 Comparison of HiPIMS (two-layer vs three-layer systems) and uPMS for V1-xWxO2 coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Summary and outlook 101 6.1 Research goal and achievements . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Layer deposition and results overview . . . . . . . . . . . . . . . . . . . . 102 6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7 Appendix 105 8 Abbreviations 108 9 Formula symbols 109 Literature 118

Page generated in 0.064 seconds