• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle swarm optimization and differential evolution for multi-objective multiple machine scheduling

Grobler, Jacomine 24 June 2009 (has links)
Production scheduling is one of the most important issues in the planning and operation of manufacturing systems. Customers increasingly expect to receive the right product at the right price at the right time. Various problems experienced in manufacturing, for example low machine utilization and excessive work-in-process, can be attributed directly to inadequate scheduling. In this dissertation a production scheduling algorithm is developed for Optimatix, a South African-based company specializing in supply chain optimization. To address the complex requirements of the customer, the problem was modeled as a flexible job shop scheduling problem with sequence-dependent set-up times, auxiliary resources and production down time. The algorithm development process focused on investigating the application of both particle swarm optimization (PSO) and differential evolution (DE) to production scheduling environments characterized by multiple machines and multiple objectives. Alternative problem representations, algorithm variations and multi-objective optimization strategies were evaluated to obtain an algorithm which performs well against both existing rule-based algorithms and an existing complex flexible job shop scheduling solution strategy. Finally, the generality of the priority-based algorithm was evaluated by applying it to the scheduling of production and maintenance activities at Centurion Ice Cream and Sweets. The production environment was modeled as a multi-objective uniform parallel machine shop problem with sequence-dependent set-up times and unavailability intervals. A self-adaptive modified vector evaluated DE algorithm was developed and compared to classical PSO and DE vector evaluated algorithms. Promising results were obtained with respect to the suitability of the algorithms for solving a range of multi-objective multiple machine scheduling problems. Copyright / Dissertation (MEng)--University of Pretoria, 2009. / Industrial and Systems Engineering / unrestricted

Page generated in 0.1301 seconds