Spelling suggestions: "subject:"flexible systems"" "subject:"mlexible systems""
1 |
Performance Evaluation of Modal and Local Control Methods for Flexible SystemsMallela, Vineel 21 May 2010 (has links)
No description available.
|
2 |
Adaptive control of flexible systems using self-tuning digital notch filtersMaggard, William P. January 1987 (has links)
No description available.
|
3 |
Dynamics and control of a small-scale mobile boom craneMaleki, Ehsan A. 14 July 2010 (has links)
Boom cranes are one of the most dynamically complicated types of cranes because they possess rotational joints as opposed to the linear tracks of bridge and gantry cranes. In addition, if the boom crane is placed on a mobile base, additional complexity is added to the system. However, mobile boom cranes have huge potential benefits as they can be quickly transported from one location to another. Furthermore, if they utilize their mobile base during lifting operations, then they can have an extremely large workspace. All cranes share the same limiting weakness; the payload oscillates when the crane moves. A command-generation approach is taken to control the payload oscillation. Input shaping is one such command-generation technique that modifies the original reference command by convolving it with a series of impulses. The shaped command produced by the convolution can then move the crane without inducing payload oscillation. Input shaping can accommodate parameter uncertainties, nonlinearities, multiple modes of vibration, and has been shown to be compatible with human operators. This thesis focuses on three aspects of mobile boom cranes: 1) dynamic analysis, 2) input-shaping control, and 3) experimental testing. A majority of the thesis focuses on analyzing and describing the complicated dynamics of mobile boom cranes. Then, various input-shaping controllers are designed and tested, including two-mode shapers for double-pendulum dynamics. In order to experimentally verify the simulation results, a small-scale mobile boom crane has been constructed. The details of the mobile boom crane and its important features are presented and discussed. Details of the software used to control the crane are also presented. Then, several different experimental protocols are introduced and the results presented. In addition, a set of operator performance studies that analyze human operators maneuvering the mobile boom crane through an obstacle course is presented.
|
4 |
ADDITIVE MANUFACTURING TECHNOLOGIES FOR FLEXIBLE OPTICAL AND BIOMEDICAL SYSTEMSBongjoong Kim (10716684) 28 April 2021 (has links)
<p>Advances in additive
manufacturing technologies enable the rapid, high-throughput generation of mechanically
soft microelectromechanical devices with tailored designs for many applications
spanning from optical to biomedical applications. These devices can be softly
interfaced with biological tissues and mechanically fragile systems, which
enables to open up a whole new range of applications. However, the scalable
production of these devices faces a significant challenge due to the complexity
of the microfabrication process and the intolerable thermal, chemical, and
mechanical conditions of their flexible polymeric substrates. To overcome these
limitations, I have developed a set of advanced additive manufacturing
technologies enabling (1) mechanics-driven
manufacturing of quasi-three-dimensional (quasi-3D) nanoarchitectures with
arbitrary substrate materials and structures; (2) repetitive replication of quasi-3D
nanoarchitectures for infrared (IR) bandpass filtering; (3) electrochemical
reaction-driven delamination of thin-film electronics over wafer-scale; (4)
rapid custom printing of soft poroelastic materials for biomedical
applications. </p>
<p>First, I have developed a new
mechanics-driven nanomanufacturing method enabling large-scale production of
quasi-3D plasmonic nanoarchitectures that are capable of controlling light at
nanoscale length. This method aims to eliminate the need for repetitive uses of
conventional nanolithography techniques that are time- and cost-consuming. This
approach is innovative and impactful because, unlike any of the conventional manufacturing
methods, the entire process requires no chemical, thermal, and mechanical
treatments, enabling a large extension of types of receiver substrate to nearly
arbitrary materials and structures. Pilot deterministic assembly of quasi-3D
plasmonic nanoarrays with imaging sensors yields the most important advances,
leading to improvements in a broad range of imaging systems. Comprehensive
experimental and computational studies were performed to understand the underlying
mechanism of this new manufacturing technique and thereby provide a
generalizable technical guideline to the manufacturing society. The constituent
quasi-3D nanoarchitectures achieved by this manufacturing technology can
broaden considerations further downscaled plasmonic metamaterials suggest
directions for future research.</p>
<p>Second, I have developed mechanics-driven
nanomanufacturing that provides the capability to repetitively replicate quasi-3D
plasmonic nanoarchitectures even with the presence of an extremely brittle
infrared-transparent spacer, such as SU-8, thereby manipulating IR light (e.g.,
selectively transmitting a portion of the IR spectrum while rejecting all other
wavelengths). Comprehensive experimental and computational studies were
performed to understand the underlying nanomanufacturing mechanism of quasi-3D
plasmonic nanoarchitectures. The spectral features such as the shape of the
transmission spectrum, peak transmission and full width at half maximum (FWHM),
etc. were studied to demonstrate the bandpass filtering effect of the assembled
quasi-3D plasmonic nanoarchitecture.</p>
<p>Third, I have developed an
electrochemical reaction-driven transfer printing method enabling a one-step
debonding of large-scale thin-film devices. Conventional transfer printing
methods have critical limitations associated with an efficient and intact
separation process for flexible 3D plasmonic nanoarchitectures or
bio-integrated electronics at a large scale. The one-step electrochemical
reaction-driven method provides rapid delamination of large-scale quasi-3D
plasmonic nanoarchitectures or bio-integrated electronics within a few minutes
without any physical contact, enabling transfer onto the target substrate
without any defects and damages. This manufacturing technology enables the rapid
construction of quasi-3D plasmonic nanoarchitectures and bio-integrated
electronics at a large scale, providing a new generation of numerous
state-of-art optical and electronic systems.</p>
<p>Lastly, I have developed a new
printing method enabling the direct ink writing (DIW) of multidimensional
functional materials in an arbitrary shape and size to rapidly prototype stretchable
biosensors with tailored designs to meet the requirement of adapting the
geometric nonlinearity of a specific biological site in the human body. Herein,
we report a new class of a poroelastic silicone composite that is exceptionally
soft and insensitive to mechanical strain without generating significant
hysteresis, which yields a robust integration with living tissues, thereby
enabling both a high-fidelity recording of spatiotemporal electrophysiological
activity and real-time ultrasound imaging for visual feedback. Comprehensive <i>in vitro</i>, <i>ex vivo</i>,
and <i>in vivo</i> studies provide not only to understand the
structure-property-performance relationships of the biosensor but also to
evaluate infarct features in a murine acute myocardial infarction model. These
features show a potential clinical utility in the simultaneous intraoperative
recording and imaging on the epicardial surface, which may guide a definitive
surgical treatment.</p>
|
5 |
Control of human-operated machinery with flexible dynamicsMaleki, Ehsan A. 13 January 2014 (has links)
Heavy-lifting machines such as cranes are widely used at ports, construction sites, and manufacturing plants in a variety of material-transporting applications. However, cranes possess inherent flexible dynamics that make fast and precise operation challenging. Most cranes are driven by human operators, which adds another element of complexity. The goal of this thesis is to develop controllers that allow human operators to easily and efficiently control machines with flexible dynamics. To improve the ease of human operation of these machines, various control structures are developed and their effectiveness in aiding the operator are evaluated. Cranes are commonly used to swing wrecking balls that demolish unwanted structures. To aid the operator in such tasks, swing-amplifying controllers are designed and their performance are evaluated through simulations and experiments with real operators. To make maneuvering of these machines in material-transporting operations easier, input-shaping control is used to reduce oscillation induced by operator commands. In the presence of external disturbances, input shaping is combined with a low-authority feedback controller to eliminate unwanted oscillations, while maintaining the human operator as the primary controller of the machine. The performance and robustness of the proposed controllers are thoroughly examined via numerical simulations and a series of experiments and operator studies on a small-scale mobile boom crane and a two-ton dual-hoist bridge crane.
|
6 |
Adaptive Output Feedback Control of Flexible SystemsYang, Bong-Jun 12 April 2004 (has links)
Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process.
Within this context, adaptive compensation for external disturbances is addressed.
In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The
effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction.
While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be
applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator.
The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an
adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in both the observer and the
controller. Simulations to illustrate these approaches include an inverted pendulum with its cart serially attached to two carts
(one unmodelled), three spring-coupled inverted pendulums, and an inverted pendulum with its initial condition in a range in which a linear controller is destabilizing.
|
Page generated in 0.0567 seconds