• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de la stabilité dimensionnelle et des propriétés mécaniques du bois d'épinette noire

Paes Torquato, Luciane 02 February 2024 (has links)
Les propriétés de flexion et la stabilité dimensionnelle sont des propriétés déterminantes pour le potentiel d’utilisation du bois dans les structures de bâtiments et les produits à valeur ajoutée. Une connaissance détaillée des patrons de variation des propriétés du bois à l’intérieur de l’arbre est essentielle pour optimiser l’usage de cette ressource renouvelable et développer des produits hautement performants. L’objectif général de cette recherche doctorale était de caractériser et modéliser les patrons de variation des propriétés de flexion et de la stabilité dimensionnelle du bois à l’intérieur de l’arbre en fonction de différents paramètres (l’âge cambial, hauteur dans la tige, largeur des cernes) et en tenant compte de l’historique des peuplements. Cet objectif fut poursuivi au moyen des objectifs spécifiques suivants: décrire le patron de variation des propriétés physico-mécaniques de la moelle vers l’écorce (c.-à-d. en fonction de l’âge cambial) et dans l’axe longitudinal de la tige ; modéliser l’effet du taux de croissance radiale sur les propriétés physico-mécaniques ; modéliser l’effet de la masse volumique basale du bois sur les propriétés physico-mécaniques et examiner les différences entre les deux types de structures de peuplements (régulier et irrégulier). L’étude a porté sur l’épinette noire (Picea mariana [Mill.] B.S.P), une espèce de grande importance commerciale au Canada. Soixante arbres ont été échantillonnés dans 12 peuplements localisés au nord et au sud de la Côte-Nord, 30 arbres dans 6 peuplements de la région de l’Abitibi-Témiscamingue et 42 arbres provenant de la région du Lac-Saint-Jean. Une approche de modélisation statistique a été utilisée pour rapporter les paramètres de résistance à la flexion, de rigidité et de stabilité dimensionnelle à des variables telles que l'âge cambial et le taux de croissance annuel. Les peuplements ont été échantillonnés avec un temps connu depuis le passage du dernier feu, car cela est connu pour influencer la structure du peuplement et la croissance des arbres. Les résultats ont confirmé que l'âge cambial est clairement la source la plus importante de la variation en direction radiale des propriétés du bois, lequel pourrait être utilisé comme variable prédictive. La largeur des cernes annuels a eu une influence additionnelle faible pour expliquer les variations des propriétés mécaniques et celles de stabilité dimensionnelle. Le bois des arbres à croissance plus rapide des peuplements réguliers avait des propriétés mécaniques supérieures, et était moins stable en termes de dimensions. Les arbres à croissance lente issus de peuplements irréguliers pourraient produire du bois final moins dense, ce qui tendrait à diminuer les propriétés / Bending strength, stiffness, and dimensional stability of wood are determining properties fortheir potential use in building structure and added-value products. A detailed knowledge of the variation patterns of the properties inside a tree is essential to optimize the use of this renewable resource and to develop high-performance products. This PhD project’s goal is to characterize and model the variation pattern for bending strength, stiffness, and dimensional stability within the tree as a function of different parameters (radial distance, the height ofthe stem, the ring width) and taking into account the history of the stands. This general objective was pursued by the means of the specific objectives to : 1) describe the variation pattern of the physico-mechanical properties from pith to the bark (i.e. as a function ofcambial age) and in the longitudinal axis of the stem; 2) model the effect of the radial growth rate on the physico-mechanical properties; 3) model the effect of the basic specific densityon the physico-mechanical properties and examine the differences between the two types of stand structures (regular and irregular). The study focused on black spruce (Picea mariana[Mill.] B.S.P.), a species of high commercial importance in Canada. Sixty trees were sampled in twelve stands located north and south of the North Shore region, thirty trees in six standsin Abitibi-Témiscamingue and forty-two trees from Lac Saint-Jean. This study used astatistical modelling approach to relate flexural strength, stiffness and dimensional stability parameters to variables such as cambial age and annual growth rate. The stands were sampled with a known time since the last fire because this is known to influence stand structure and tree growth. The results confirmed that cambial age is clearly the most important source ofradial direction variation in wood properties, which could be used as a predictive variable. The ring width had a small additional influence to explain the variations in mechanical and dimensional stability properties. The fast-growing wood in regular stands had superior mechanical properties and were less dimensionally stable. Slow-growing trees from unevenaged, irregular stands may produce less dense late wood, which would tend to reduce mechanical properties and increase the dimensional stability of the material. Thus, these properties may be affected by the patterns of intra-ring variation in wood density. The effect of stand type on the wood physico-mechanical properties may also be due to the presence of mild compression wood, which can occur in trees of layer origin or in trees subjected togreater or more complex mechanical stimuli. Analyses also indicate that wood density and cambial age measurements can be used to estimate dimensional stability and mechanical properties. In addition, prediction indices have shown that it is preferable to predict dimensional stability from MOE and cambial age measurements rather than opting for the opposite case, i.e., estimating mechanical properties from dimensional stability. These results could have practical implications for decision-making in forest management and wood allocation. The selection of forest stands to produce black spruce wood for either high dimensional stability or high mechanical properties may be an interesting option that emerges from our results. In general, the modelling results were able to clearly characterize the differences between the two types of stand structures. However, further fundamental researchis needed to elucidate the mechanisms of wood formation that are responsible for differences in properties related to the growth environment in these two types of stand, including the internal structure of growth rings and the ultrastructure and chemical composition of the cell wall of wood tracheids, in order to obtain a more complete tool of simulation of wood qualityfor black spruce.
2

Strengthening of multi-span reinforced concrete structures using FRCM composites : experimental and analytical investigations / Renforcement des structures en béton armé à multi-portées à l'aide de composites MCRF

Mandor, Ahmed 25 November 2023 (has links)
La détérioration des structures en béton armé est inévitable pour de nombreuses raisons telles que les exigences de charge, les changements d'utilisation, les changements dans les codes de conception, et le plus important, l'exposition continue à un environnement difficile pendant le cycle de vie. Par conséquent, ils deviennent vulnérables à la fissuration, à la carbonatation du béton, à l'écaillage de la couverture et à d'autres formes de détérioration qui rendent indispensable la demande de processus de modernisation et de renforcement. Récemment, les systèmes matrices cimentaires renforcées de fibres (MCRF) ont rejoint la famille des matériaux de renforcement/réparation en tant qu'alternative prometteuse pour surmonter les inconvénients associés aux systèmes de polymère renforcé de fibres (PRF). Les MCRF ont montré des performances significatives dans le renforcement des structures déficientes/détériorées en termes de déformation et de capacité de charge. Cependant, l'utilisation de tels systèmes a été limitée aux structures simplement soutenues. À ce jour, la faisabilité de l'utilisation de systèmes MCRF pour renforcer les structures à plusieurs portées n'a jamais été signalée, bien que de telles structures se manifestent dans de nombreuses applications d'ingénierie telles que les bâtiments résidentiels, les garages de stationnement, les ponts supérieurs et les ponts à longue portée. Par conséquent, le comportement de telles structures lorsqu'elles sont renforcées avec des MCRF est inconnu en termes de modes de rupture, de ductilité et, surtout, de formation de rotules plastiques à leurs sections critiques. Dans cette étude, le comportement en flexion de poutres à multi-portées en béton armé déficientes et renforcées avec des systèmes MCRF a été étudié. Le travail comprend des enquêtes expérimentales et analytiques. Le travail expérimental consistait en seize poutres à deux portées à grande échelle de 150 x 250 x 3600 mm. Les poutres ont été construites et testées dans des configurations de charge à cinq points. Pour stimuler le défaut de flexion qui pourrait survenir lors de la conception ou pendant la construction, le rapport des armatures de traction interne dans la section déficiente était presque de 50 % de celui de l'autre section et doit donc être renforcé. Les paramètres d'essai comprenaient l'emplacement (sections négatives ou positives) et le type de systèmes de renforcement utilisés (PBO-MCRF, C-MCRF et PRF), le nombre de composites MCRF (1, 2 et 4 couches), et le schéma de renforcement (configurations symétriques et asymétriques). Les résultats des tests ont reflété le rôle important de l'utilisation de MCRF systèmes dans l'amélioration de la réponse en flexion des structures continues déficientes, en particulier la ductilité, les rapports de redistribution des moments et les capacités de charge. Les systèmes MCRF, en particulier PBO-MCRF, ont montré une réponse de glissement progressive entre les fibres et leur matrice environnante, contrairement à la manière rigide et soudaine courante des systèmes PRF. Ceci était cohérent avec la ductilité des poutres renforcées, qui présentaient des indices comparables à ceux des poutres de contrôles. Par conséquent, les sections renforcées avaient une capacité de rotation suffisante pour redistribuer les moments dans un intervalle représentant 42 et 80 % de celle de leurs homologues non renforcées dans la poutre de contrôle. Les systèmes MCRF ont également amélioré la capacité de flexion des poutres renforcées avec une augmentation comprise entre 5 et 36 % de celle des poutres de contrôle par rapport à une augmentation comprise entre 31 et 63 % pour la capacité de moment, en fonction du type, de la quantité, de l'emplacement et de la configuration du MCRF utilisé. De plus, l'utilisation de couches MCRF dans les régions d'affaissement a considérablement amélioré la rigidité en flexion des poutres renforcées dans la phase de service (avant la plastification de l'acier) par rapport à leurs homologues dans les sections de monopolisation. Cela était dû à l'effet de restriction des composites MCRF sur le comportement à la fissuration émergé dans de telles régions d'affaissement Analytiquement, les directives de conception de l'ACI 549.4R-20 (ACI 2020) ont été étudiées à l'aide des données expérimentales obtenues à partir des tests. Il a été conclu que les formulations de l'ACI 549.4R (2020) sous-estimaient les résistances ultimes des poutres renforcées par MCRF. Par conséquent, l'auteur a développé un modèle de déformation qui peut identifier avec précision les déformations de décollement dans les systèmes MCRF à utiliser dans les équations de conception estimant la contribution de ces systèmes à la capacité de flexion des éléments renforcés. Cette étude a introduit un modèle analytique qui peut prédire avec précision le comportement en flexion des structures à plusieurs travées en mettant l'accent sur leur capacité de rotation et leur ductilité. Contrairement aux modèles disponibles dans la littérature, le modèle proposé tient compte de la variation de la rigidité de la structure lors du chargement y compris celle du système de renforcement utilisé. Le modèle peut déterminer avec précision la capacité de rotation des rotules en plastique formées, estimer le rapport de redistribution des moments entre les sections critiques à n'importe quelle charge appliquée et anticiper le mécanisme de défaillance de la structure renforcée. L'efficacité du modèle a été validée par rapport aux résultats d'essais des poutres renforcées avec MCRF considérées dans le programme expérimental et un bon accord entre les résultats expérimentaux et analytique a été obtenu. Afin de déterminer avec précision les flèche à mi-portée des structures renforcées à multi-portées, un nouveau paramètre de réduction a été incorporé dans les formulations ACI 318 (2019) pour tenir compte de la rigidité du système de renforcement, car ces formulations ont été principalement développées pour les structures non renforcées. Les nouvelles formulations ont considérablement amélioré la prédiction de la capacité de déflexion des structures renforcées avec un rapport expérimental/analytique moyen de 1.02 contre 1.7 lorsque les formulations ACI ont été utilisées. Le résultat de ce travail a été publié (ou soumis pour publication) dans cinq articles de revues et un article dans une conférence, comme détaillé tout au long de la thèse. / Deterioration of reinforced concrete (RC) structures is unavoidable due to many reasons such as loading requirements, changes in use, change in the design codes, and the most important the continuous exposure to harsh environment during the life cycle. Consequently, they become vulnerable to cracking, concrete carbonation, cover spalling, and other forms of deterioration that make the demand for retrofitting and strengthening processes are essential. At present, fabric reinforced cementitious matrix (FRCM) systems have recently joined the family of strengthening/repairing techniques as a promising alternative to overcome the drawbacks associated with fiber reinforced polymer (FRP) systems. FRCM showed significant performance in strengthening the deteriorated structures in terms of the deformation and the load-carrying capacities. However, the use of such systems has been limited to the simply supported structures. To date, the feasibility of the use of FRCM systems to strengthen multi-span RC structures has never been reported, though such structures are manifested in many engineering applications such as RC residential buildings, parking garages, and long span bridges. Therefore, the behavior of RC continuous structures when strengthened with FRCM systems is unknown in terms of failure modes, ductility, moment redistribution between critical sections and most importantly, the formation of plastic hinges at those sections. In this study, the flexural behavior of RC deficient continuous beams strengthened with FRCM systems were investigated. The work included experimental and analytical investigations. The experimental work consisted of sixteen large-scale continuous beams of 150 x 250 x 3600 mm. The beams were constructed and tested under five-point load configurations. To stimulate the flexural deficiency that might occur in design or during construction, the ratio of the internal tensile steel in the deficient section was almost 50% of that of the other section and therefore need to be strengthened. The test parameters included the location (hogging or sagging sections) and the type of strengthening systems used (PBO-FRCM, C-FRCM, and FRP), the number of FRCM systems (1, 2, and 4 layers), and the strengthening scheme (symmetric and asymmetric configurations). The test results proved the efficiency of FRCM systems in enhancing the flexural response of RC deficient continuous structures, particularly the ductility, the moment redistribution ratios, and load-carrying capacities. FRCM systems, especially PBO-FRCM showed gradual slippage response between the fibers and their surrounding matrix contrary to the common stiff and sudden manner of FRP systems. This was consistent with the ductility of the strengthened beams, which showed comparable indices to that of the control beams. Consequently, the strengthened sections had enough rotation capacity to redistribute the moments in a range representing 42 and 80% from that of their unstrengthened counterparts in the control beam. FRCM also increased the load-carrying capacity of the strengthened beams in a range between 5 and 36% of that in the control beams compared to an increase ranged between 31 and 63% for the moment capacity, based on the type, amount, location, and configuration of the FRCM used. Moreover, strengthening the sagging regions notably enhanced the flexural stiffness of the strengthened beams in the service stage (before steel yielding) compared to their counterparts in the hogging regions. This was due to the restriction effect of FRCM composites on the cracks formation and their pattern emerged in such sagging regions. Analytically, the design guidelines of ACI 549.4R-20 (ACI 2020) were investigated using the experimental data obtained from the tests. It was concluded that the formulations of ACI 549.4R (2020) underestimated the ultimate strengths of FRCM-strengthened beams. Therefore, the author developed a strain model that can accurately identify the debonding strains in FRCM systems to be used in the design equations estimating the contribution of such systems to the flexural capacity of strengthened elements. This study proposed an analytical model that can accurately predict the flexural behavior of multi-span RC structures with a focus on their rotational capacity and ductility. Unlike the available models in the literature, the proposed model accounts for the variation in the structure's stiffness during loading including that of the strengthening system used. The model can precisely determine the rotational capacity of the formed plastic hinges, estimate the moment redistribution ratio between the critical sections at any applied load, and anticipate the failure mechanism of the strengthened structure. The efficiency of the model was validated against the test results of FRCM-strengthened beams considered in the experimental program and a good agreement between the experimental and the theoretical results was obtained. To accurately determine the midspan deflections of continuous EB-strengthened structures, a new reduction parameter was incorporated in the ACI 318 (2019) formulations to account for the stiffness of the strengthening system, as those formulations were mainly developed for unstrengthened RC structures. The new formulations substantially enhanced the prediction of the deflection capacity of the strengthened structures with an average experimental-to-analytical ratio of 1.02 versus 1.7 when ACI formulations were used. The outcome of this work has been published (or submitted for publication) in five journal articles as well as one conference paper as detailed throughout the thesis.
3

Experimental and numerical investigation of the flexural behavior of RC slabs reinforced with BFRP bars with and without basalt fibers

Attia, Karim 24 April 2018 (has links)
Cette étude évalue à la fois expérimentalement et numériquement le comportement en flexion des dalles de béton renforcées avec des barres en PRF de basalte avec et sans fibres de basalte. Les paramètres étudiés comprenaient les dosages des fibres de basalte utilisés dans le mélange de béton et les ratios du renforcement longitudinale dans les poutres. Tout d'abord, l'effet de différents dosages des fibres sur les propriétés mécaniques du béton a été évalué. Cela a été suivi par des essais de flexion qui ont été menés sur huit dalles à grande échelle chargées en quatre points. Des modèles numériques en éléments finis (ÉF) ont été élaborés à l'aide du logiciel ATENA® pour prédire le comportement en flexion des spécimens testés. Pour les résultats expérimentaux, l'augmentation du dosage des fibres de basalte a amélioré la résistance à la compression et le module de rupture du béton. Les dalles avec des dosages plus élevés de fibres ont montré une augmentation du nombre de fissures et une augmentation de leurs capacités ultimes. L'augmentation du dosage des fibres conduisait à une diminution de la ductilité des dalles testées. Cependant, toutes les dalles présentaient des indices de ductilité supérieurs à la valeur minimale exigée par la norme CAN/CSA-S6-06. Le ratio de renforcement longitudinal a eu un léger effet sur la charge de fissuration. Cependant, il contrôlait les flèches des dalles testées. Ces résultats étaient en accord avec les résultats rapportés dans la littérature pour les dalles renforcées de barres d'acier et fabriquées en béton renforcé de fibres d'acier. Un très bon accord entre les valeurs numériques et les résultats expérimentaux était obtenu. Les modèles ÉF simulaient bien le comportement en flexion des dalles en termes de charges de fissuration, des capacités, des flèches, et des configurations de fissure. Le modèle d'engagement variable a réussi à simuler le comportement du béton renforcé avec des fibres de basalte. Compte tenu du fait que ce modèle a été initialement développé pour les mélanges de béton renforcé avec des fibres d’acier, on pourrait déduire que les bétons fibrés de basalte ont un comportement comparable à celui des bétons fibrés d’acier. / This study assesses both experimentally and numerically the flexural behaviour of concrete slabs reinforced with basalt-fiber reinforced polymer (BFRP) bars cast with and without basalt fiber-reinforced concrete (BFRC). The parameters investigated included the volume fractions of the basalt fibers used in the concrete mix and the ratios of the longitudinal tensile reinforcement in the beams. First, the effect of different fiber volume fractions on the mechanical properties of concrete was assessed. This was followed by flexural tests that were conducted on eight large-scale slabs under four-point load configuration. A finite element model (FEM) was developed using ATENA® to simulate the flexural behaviour of the tested specimens. Based on the experimental results, increasing the fiber volume fraction enhanced the compressive strength and modulus of rupture of concrete. Slabs with higher dosages of fibers showed increased number of cracks and an increase in their cracking and ultimate capacities. Increasing the fiber content led to decreased ductility in the tested slabs. However, all slabs showed a ductility index that exceeded the minimum value stated by CAN/CSA-S6-06. The longitudinal reinforcement ratio had a slight effect on the cracking load. However, it governed the deflection of the tested slabs. These results were in agreement with the test results reported in the literature for slabs reinforced with steel bars and cast with conventional steel fiber-reinforced concrete (SFRC). A very good agreement between the numerical and the experimental results was obtained. The FEM predicted well the flexural behaviour of the slabs in terms of cracking loads, load-carrying capacities, deflections, and crack pattern. The Variable Engagement Model (VEM) successfully captured the behavior of the BFRC. Considering the fact that the model was initially developed for SFRC mixes, it could be concluded that BFRC has a comparable behavior to SFRC.
4

Analyse génétique quantitative des propriétés physiques et mécaniques du bois de l'épinette blanche (Picea glauca [Moench] Voss))

Rashidijouybari, Iman 12 November 2023 (has links)
Au cours des dernières décennies, l'approvisionnement en bois des forêts naturelles a considérablement diminué, tandis que la production des forêts de plantation a augmenté régulièrement dans le monde entier. Au Canada, la concurrence s'est accrue sur les plantations de conifères à croissance rapide, tout en causant une diminution du bois de haute qualité. Par conséquent, une connaissance approfondie des facteurs tels que les caractéristiques importantes du bois et leurs aspects génétiques affectant les propriétés du bois peut nous conduire à produire du bois de haute qualité requis par différentes industries du bois. Les principaux objectifs de cette recherche sont (i) d'estimer le phénotype quantitatif et les paramètres génétiques sur les traits de croissance du bois et les propriétés de flexion, tels que l'héritabilité génétique, les corrélations et le gain pour l'épinette blanche, (ii) de modéliser la variation radiale des propriétés de flexion de petits échantillons clairs, (iii) de mesurer l'efficacité de la prédiction des outils de vitesse acoustique sur le module d'élasticité. Pour les fins de cette recherche, des carottes de bois et des échantillons de bois massif ont été prélevés sur 289 arbres provenant de 38 familles poly-croisées d'un test provenance-descendance répété sur deux sites (Valcartier et Normandin) de la province de Québec. À l'aide du système SilviScan™, des profils moelle à écorce à haute résolution ont été obtenus (à partir de carottes de bois, ce qui a permis d'extraire un certain nombre de caractéristiques du bois différentes telles que la densité, l'angle des microfibrilles) et la largeur des cernes. Alors que la rigidité et la résistance à la flexion (c'est-à-dire MOE et MOR) ont été estimées sur la base d'échantillons de bois massif. La hauteur de l'arbre, le diamètre à hauteur de poitrine (DHP) et la vitesse acoustique ont également été obtenus sur l'arbre sur pied. Dans le premier chapitre, nous avons mis en évidence les estimations d'héritabilité modérée à élevée pour la rigidité et la résistance à la flexion, la hauteur, le DBH et la densité du bois. Le MOE s'est révélé avoir le gain génétique le plus élevé que tous les autres caractères. De plus, selon les scénarios de sélection multi-caractères, la sélection des propriétés de flexion du bois au moyen de la vitesse acoustique et de la densité du bois était la méthode efficace qui peut être combinée dans les programmes opérationnels de sélection de l'épinette blanche pour améliorer simultanément les gains génétiques pour la croissance et les propriétés de flexion du bois. Dans le deuxième chapitre, nous avons développé des modèles décrivant la variation moelle-écorce de MOE et MOR mesurés sur de petits échantillons sans défauts obtenus à partir des mêmes deux essais de descendance d'épinette blanche de 38 familles poly-croisées. Dans un premier temps, les effets de l'âge cambial et de la largeur des cernes annuels sur le MOE et le MOR ont été modélisés. Ensuite, la variation génétique et l'héritabilité des résidus de notre modèle de prédiction des propriétés de flexion ont été quantifiées. Les résultats confirment l'effet de détérioration du bois juvénile sur le MOE et le MOR, tandis qu'une valeur élevée et plus stable des propriétés de flexion sera atteinte après l'âge cambial de 15 ans. De plus, l'effet du nombre d'anneaux par échantillon a révélé qu'un nombre élevé d'anneaux par centimètre cube introduit une valeur élevée du MOE et en particulier du MOR. L'héritabilité du MOE et du MOR était modérée à élevée pour le site Normandin, alors qu'une faible héritabilité a été estimée pour le site Valcartier. La performance du modèle développé pour le MOE était prometteuse, tandis que le modèle MOR était moins intéressant, particulièrement au site Normandin qui pourrait s'expliquer par le fait qu'un petit échantillon sans défaut qui pourrait ne pas être suffisamment représentatif de la résistance de l'arbre sur pied. Dans l'ensemble, le modèle a confirmé un effet des variables d'arbre et de site sur les deux propriétés de flexion. Enfin, dans le troisième chapitre, nous avons étudié l'efficacité de la vitesse acoustique pour prédire le MOE moyen au niveau individuel et familial. Nous avons également étudié l'effet du site de plantation pour savoir si cet effet était significatif. D'après les résultats, des corrélations modérées (R2 = 0,34 à 0,42) et fortes (R2 = 0,57 à 0,60) entre MOEdGD, MOEdRH et le MOE statique (MOEs), respectivement au niveau individuel et familial, ont été obtenues au site de plantation Normandin. Il a été révélé que MOEdRH permet une meilleure prédiction de la rigidité dans les deux sites. De plus, la matrice de corrélation de Pearson a également confirmé une forte corrélation dans le site de plantation Normandin entre les MOE et MOEdRH, r = 0,65 et r = 0,77 estimés en fonction du niveau individuel et familial, respectivement, à un intervalle de confiance de 95. La recherche actuelle aidera à mettre en œuvre efficacement les caractéristiques de qualité du bois dans les programmes de sélection des arbres et à aider les sélectionneurs à produire à l'avenir des produits à valeur ajoutée de haute qualité à partir du bois d'épinette blanche cultivé en plantation. / In recent decades, wood supply from natural forests has declined considerably, while the production from plantation forests has increased steadily worldwide. In Canada, however, intensive forestry plantations for fast-growing conifers, lead to a decrease in high-quality lumber. Consequently, deep knowledge is needed to understand wood traits influencing lumber quality, and the genetic control of those wood traits for selection and breeding in order to produce high-quality timber from future plantations. The main objectives of this research are to (i) estimate requisite genetic parameters, such as genetic heritability, correlations, and gain, (ii) profile the flexural properties based on the radial variation on small clear samples, (iii) prediction efficiency of acoustic velocity tools on the modulus of elasticity. For the purpose of this research, wood cores and solid wood samples were collected from 289 trees originating from 38 poly-cross families of a provenance-progeny test repeated on 2 sites (Valcartier and Normandin) in the province of Québec. Using the SilviScan™ system, high-resolution pith-to-bark profiles were obtained from increment cores, from which wood density, microfibril angles (MFA), and ring width were measured. Tree height, diameter at breast height (DBH), and acoustic velocity were also obtained on the standing tree. Finally, flexural stiffness and strength (i.e. MOE and MOR) were estimated based on solid wood samples. In the first chapter, we have highlighted moderate to high heritability estimates for flexural stiffness and strength, height, DBH, and wood density. MOE was revealed to have the highest genetic gain. Further, according to multi-trait selection scenarios, selection for wood flexural properties by means of acoustic velocity and wood density was an efficient method that can be combined in operational white spruce breeding programs to improve simultaneously genetic gains for growth and wood flexural properties. In the second chapter, we developed models describing the pith-to-bark variation of MOE and MOR measured on small defect-free samples obtained from the same two white spruce progeny trials of 38 poly-cross families. In the first step, the effects of cambial age and annual ring width on MOE and MOR were modeled. Then, the genetic variation and heritability of the residuals of our prediction model for flexural properties were quantified. The results confirm the deteriorating effect of juvenile wood on MOE and MOR, while the high and more stable value of flexural properties will be achieved after the cambial age of 15. Furthermore, the effect of ring number per sample revealed a high number of rings per centimeter cube introducing a high value of MOE and especially on MOR. The heritability of MOE and MOR were moderate to high for site Normandin, while low heritability was estimated for site Valcartier. The model performance developed on MOE was promising, while the MOR model was less interesting, especially at site Normandin which could be explained by the use of a small defect-free sample that may not be sufficiently representative of the standing tree strength. Overall, the model confirmed an effect of both tree and site variables on both flexural properties. Finally, in the third chapter, we investigated the efficiency of acoustic velocity to predict the mean individual and family-level MOE. We also investigated the plantation site effect to understand if there is any significant effect. According to the results, moderate correlations (R² = 0.34 to 0.42) and strong correlations (R² = 0.57 to 0.60) between (MOE[subscript dGD]), (MOE[subscript dRH]) and static MOE (MOEₛ), based on individual and family level, respectively, were obtained at plantation site Normandin. It was revealed that (MOE[subscript dRH]) allows a better prediction of stiffness in both sites. Further, the Pearson correlation matrix also confirmed a strong correlation in plantation site Normandin between MOEs and MOE[subscript dRH], r= 0.65 and r=0.77 estimated based on individual and family level, respectively, at 95% confidence interval. The current research will help to effectively implement wood quality traits into tree breeding programs and to assist the breeders in the production of high-quality value-added products from plantation-grown white spruce wood in the future.
5

Flexural performance of reinforced concrete stabs strengthened with near-surface mounted bars (NSM) technique

Aljidda, Omar 17 June 2024 (has links)
Récemment, il y a eu une montée en popularité de l'utilisation de produits en polymère renforcé de fibres (PRF) collés à l'externe (EB) pour renforcer les structures en béton armé (BA). Cependant, cette technique a rencontré des limites de durabilité et des complications pratiques. En réponse à ces défis, la technique d'ancrage en surface proche (NSM) a émergé comme une alternative prometteuse pour renforcer les structures en BA, visant à surmonter ces lacunes. Les systèmes NSM-PRF se composent de barres ou de bandes qui sont incorporées dans des rainures préfabriquées dans le béton, en utilisant des adhésifs. Bien que la technique NSM ait été appliquée avec des barres traditionnelles en PRF de carbone (PRFC) et de verre (PRFV), l'introduction récente de PRF de basalte (PRFB) a élargi les options. Cependant, l'inclusion de barres PRFB dans les normes approuvées a été entravée par un manque de recherche sur leur efficacité en tant que renfort, en particulier dans les applications NSM. Notamment, les études précédentes n'ont pas examiné en profondeur leur utilisation en tant que barres NSM. De plus, l'utilisation de la technique NSM-PRF s'est principalement concentrée sur les poutres en BA, avec une exploration limitée de sa faisabilité pour renforcer les dalles en BA. L'application de cette technique aux dalles avec des ouvertures ou des dalles endommagées par la corrosion reste largement inexplorée. Étant donné la rareté d'informations sur son efficacité dans ces scénarios, une évaluation des performances de liaison et de la durabilité à long terme des barres NSM-PRF est impérative. Pour combler ces lacunes dans la littérature existante, cette étude vise à évaluer les performances des barres NSM à la fois au niveau des composants et au niveau des structures. Au niveau des composants, une investigation expérimentale et analytique sur les performances de liaison des barres NSM a été menée en deux étapes. Dans la première étape, 66 spécimens de liaison NSM en forme de C ont été construits et testés sous traction directe, incorporant divers matériaux tels que PRFV, PRFB, PRFC et acier inoxydable (SS). Les paramètres étudiés comprenaient la configuration de surface de la barre, la longueur collée de la barre et les types d'adhésifs. Les résultats ont indiqué que l'époxy surclassait les autres adhésifs, et les barres NSM-PRFB et PRFV déformées et sablées présentaient des résistances à la liaison similaires. Dans la deuxième étape, 78 spécimens de liaison en forme de C, renforcés avec des barres NSM-PRFB et PRFV, ont été soumis à des tests après exposition à des environnements agressifs. Les barres NSM-PRFB et PRFV ont démontré une excellente durabilité de liaison après 120 jours d'immersion dans de l'eau salée. Cependant, les spécimens soumis à des cycles d'humidification et de séchage ont présenté de légères variations de résistance à la liaison, tandis que ceux exposés à de l'eau salée pendant 30 et 60 jours et à des cycles de gel-dégel ont subi des pertes significatives de leur résistance à la liaison. Au niveau structurel, l'étude a examiné le comportement en flexion de dalles unidirectionnelles renforcées à l'aide de différentes configurations NSM. Les dalles renforcées avec des bandes EB-PRFC ont également été testées pour comparaison. Le programme expérimental comprenait 34 dalles à grande échelle (150 x 600 x 3000 mm), catégorisées en dalles sans dommages, dalles avec ouvertures découpées et dalles corrodées. Les résultats ont souligné l'efficacité remarquable des barres NSM-BFRP dans l'amélioration des performances en flexion des dalles renforcées. Numériquement, des modèles d'éléments finis 3D ont été développés pour simuler le comportement non linéaire des dalles renforcées avec les méthodes NSM et EB, avec ou sans ouvertures découpées. Les résultats ont montré une forte concordance avec les résultats expérimentaux. Analytiquement, les directives de conception décrites dans l'ACI 440 (2017) ont été évaluées. La conclusion était que les formulations de l'ACI fournissaient une prédiction raisonnable mais conservatrice de la résistance ultime des dalles renforcées avec les barres NSM. Enfin, cette étude a comblé le vide dans nos connaissances sur l'efficacité des barres PRFB en tant que barres de renforcement NSM. Les résultats de cette étude ont été diffusés à travers **six articles de revues** et **trois communications lors de conférences**, comme détaillé tout au long de la thèse. / Strengthening of reinforced concrete (RC) structures is a process that is increasingly inevitable and necessary. Recently, there has been a surge in the popularity of utilizing externally bonded (EB) fiber-reinforced polymer (FRP) products for strengthening RC structures. However, this technique has encountered durability limitations, practical complications, and vulnerability to mechanical damage and vandalism. In response to these challenges, the near-surface mounted (NSM) technique has emerged as a promising alternative to the EB methods for reinforcing RC structures, aiming to overcome their shortcomings. The NSM-FRP systems consist of bars or strips that are embedded in pre-made grooves in the concrete substrate, using adhesives characterized by their good bond to the surrounding concrete. While the NSM technique has been applied with traditional carbon-FRP (CFRP) and glass-FRP (GFRP) bars, the recent introduction of basalt-FRP (BFRP) has broadened the options. Yet, the inclusion of BFRP bars in approved FRP standards and codes has been hindered by a lack of research on their effectiveness as reinforcement, particularly in NSM applications. Notably, previous studies have not thoroughly investigated their use as NSM bars. Furthermore, the utilization of the NSM-FRP technique has predominantly focused on RC beams, with limited exploration into its feasibility for strengthening RC slabs. The application of this technique to slabs with cut-out openings or corrosion-damaged slabs, common in various engineering contexts such as parking garages, buildings, and bridges, remains largely unexplored. Given the scarcity of information on its efficiency in these scenarios, a comprehensive evaluation of the bonding performance and long-term durability of NSM-FRP bars is imperative. To address these gaps in the existing literature, this study aims to assess the performance of NSM bars at both the component level and the structural levels. On the component level, a comprehensive experimental and analytical investigation into the bond performance of NSM bars was conducted in two stages. In the initial stage, 66 C-shaped pullout NSM bond specimens were constructed and tested under direct pullout loading configuration, incorporating various materials such as BFRP, GFRP, CFRP, and stainless-steel (SS) bars. The parameters investigated included bar surface configuration, bonded length of the NSM bar, and types of adhesives. Results indicated that epoxy outperformed other adhesives, and both deformed and sand-coated NSM-BFRP and GFRP bars exhibited similar bond strengths. In the second stage, 78 C-shaped pullout specimens, reinforced with NSM-BFRP and GFRP bars, underwent testing after exposure to aggressive environments. The NSM-BFRP and GFRP bars demonstrated excellent bond durability after 120 days of immersion in salted water. However, specimens subjected to wet-dry cycles exhibited slight variations in bond strength, while those exposed to salted water for 30 and 60 days and freeze-thaw cycles experienced significant losses in their bond strength. On the structural level, the study investigated the flexural behavior of one-way RC slabs strengthened using various NSM configurations. Slabs strengthened with EB-CFRP strips were also tested for comparison. The experimental program involved 34 large-scale slabs (150 x 600 x 3000 mm), categorized into slabs with no damage, slabs with cut-out openings, and corroded slabs. The results highlighted the remarkable effectiveness of NSM-BFRP bars in enhancing the flexural performance of the strengthened slabs, even in scenarios involving lower steel reinforcement ratios. Numerically, 3D finite element (FE) models were developed to simulate the nonlinear behavior of the NSM- and EB-strengthened slabs, both with and without cut-out openings. The results showed strong agreement with the experimental findings. Analytically, the design guidelines outlined in ACI 440 (2017) were evaluated. The conclusion reached was that ACI formulations provided a reasonable yet conservative prediction of the ultimate strength of the NSM-strengthened slabs. Finally, this study has filled the gap in our knowledge about the efficacy of BFRP bars as NSM strengthening bars. The outcomes of this study have been disseminated through **six journal articles** and **three conference papers**, as detailed throughout the thesis.
6

Modélisation de poutres en béton armé endommagées par chargements cycliques : comportement en flexion et en cisaillement

Houde, Marie-Josée 12 April 2018 (has links)
Le but de ce projet de recherche est de développer un outil de modélisation du comportement d’éléments en béton armé selon une discrétisation par couches. En flexion, la modélisation repose sur la capacité de prédire d’une part le comportement d’une section fissurée et d’autre part, le comportement global d’une poutre fléchie. Un endommagement relié à l’historique de chargement est également pris en compte par l’apparition de déformations permanentes et l’imposition d’une diminution de la rigidité des matériaux. L’outil offre alors la possibilité d’établir des seuils d’alarme par la mise à jour de l’indice de fiabilité d’une structure, ce qui constitue un atout significatif à la télésurveillance. Une portion expérimentale permet de confronter les résultats obtenus de la modélisation à des essais en laboratoire sous chargements statiques et cycliques sur des poutres instrumentées. La comparaison entre les résultats expérimentaux et la prédiction du modèle démontre une très bonne concordance, autant sous chargements statiques que cycliques, malgré une prédiction un peu conservatrice des indicateurs de performance à la rupture. Ce phénomène est toutefois favorable dans l’optique de poser des seuils d’alarme en télésurveillance. Finalement, le modèle permet de construire une enveloppe de rupture incluant l’interaction des efforts de cisaillement et de flexion. L’utilisation de la théorie des champs de compression modifiée permet le suivi de l’inclinaison des fissures et de la déformation des étriers à l’ultime. Bref, le modèle assemblé s’avère un outil de prédiction efficace du comportement réel d’éléments fléchis et cisaillés en béton armé. / The objective of this research project is to develop a modeling tool (layer by layer) for the behavior of reinforced concrete members. For flexure, the model relies on the capacity to predict the behavior of a cracked section and also the behavior of the entire bent beam. Damage related to historic loading also applies, including permanent deformations and a diminished rigidity to the material. It is therefore possible to set up an alarm threshold by upgrading the reliability index of the structure which constitutes a complementary tool to telesurveillance or monitoring. An experimental program was setup to obtain results to validate the model with static and cyclic loading of instrumented beams. The comparison between the experimental results and the model predictions shows an excellent agreement for the static loading behavior, even though it is on the safe side of the performance index indicators. The phenomenon is nonetheless favourable for the proposed telesurveillance alarm threshold. Finally, the model can generate a rupture envelop including the interaction between the shear force and bending moment. The use of the modified compression field theory allows the follow-up of the crack inclination and the deformation in the stirrups at rupture. In summary, this prediction tool reveals to be a very useful one to simulate the behavior of reinforced concrete members subjected to shear and bending.

Page generated in 0.0903 seconds