• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

REAL-TIME TELEMETRY DATA FORMATTING FOR FLIGHT TEST ANALYSIS

O'Brien, R. Michael 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / With today's telemetry systems, an hour-long analog test tape can be digitized in one hour or less. However, the digitized data produced by today's telemetry systems is usually not in a format that can be directly analyzed by the test engineer's analysis tools. The digitized data must be formatted before analysis can begin. The data formatting process can take from one to eight hours depending on the amount of data, the power of the system's host computer, and the complexity of the analysis software's data format. If more than one analysis package is used by the test engineer, the data has to be formatted separately for each package. Using today's high-speed RISC processors and large memory technology, a real-time Flexible Data Formatter can be added to the Telemetry Front End to perform this formatting function. The Flexible Data Formatter (FDF) allows the telemetry user to program the front-end hardware to output the telemetry test data in a format compatible with the user's analysis software. The FDF can also output multiple data files, each in a different format for supporting multiple analysis packages. This eliminates the file formatting step, thus reducing the time to process the data from each test by a factor of two to nine.

Page generated in 0.062 seconds