• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aircraft takeoff performance monitoring in far-northern regions : an application of the global positioning system

Pinder, Shane Donald 28 April 2003
A design approach for an aircraft takeoff performance monitoring system (TOPMS) is described. In this approach, it is proposed that the Global Positioning System (GPS) in conjunction with a discrete Kalman Filter be used to determine aircraft acceleration, ground speed, and position relative to the end of the runway. A practical evaluation of the feasibility of this proposal showed clear superiority of a GPS-derived acceleration over a more traditional method employing accelerometers. This study found that, when compared to observations from carefully mounted accelerometers, the GPS-derived observation agreed to within 0.10 metres per second squared ninety percent of the time. Advantages of the GPS-derived observation included a modest noise level, insusceptibility to gravity and temperature-influenced variations, and far simplified mounting criteria. A theoretical dynamic model of an aircraft in contact with the ground was developed in consideration of factors pertaining to runways at far-northern Canadian airports. In the model, factors such as runway slope, wind velocity, wheel friction coefficient, and aircraft control settings were considered constant. While variability in any parameter considered constant by the model could influence the performance of a TOPMS, such variability was deemed beyond the scope of this preliminary investigation of a TOPMS designed specifically for the far-northern environment. A device containing a GPS receiver and data acquisition system was designed and certified, then installed in an aircraft operated by an airline servicing far-northern Canadian airports. The data collected in this manner were used to validate the theoretical model. It was concluded that a projection of displacement can be determined to within an uncertainty of fifteen metres in sufficient time to alert the pilot of an unsafe situation.
2

Aircraft takeoff performance monitoring in far-northern regions : an application of the global positioning system

Pinder, Shane Donald 28 April 2003 (has links)
A design approach for an aircraft takeoff performance monitoring system (TOPMS) is described. In this approach, it is proposed that the Global Positioning System (GPS) in conjunction with a discrete Kalman Filter be used to determine aircraft acceleration, ground speed, and position relative to the end of the runway. A practical evaluation of the feasibility of this proposal showed clear superiority of a GPS-derived acceleration over a more traditional method employing accelerometers. This study found that, when compared to observations from carefully mounted accelerometers, the GPS-derived observation agreed to within 0.10 metres per second squared ninety percent of the time. Advantages of the GPS-derived observation included a modest noise level, insusceptibility to gravity and temperature-influenced variations, and far simplified mounting criteria. A theoretical dynamic model of an aircraft in contact with the ground was developed in consideration of factors pertaining to runways at far-northern Canadian airports. In the model, factors such as runway slope, wind velocity, wheel friction coefficient, and aircraft control settings were considered constant. While variability in any parameter considered constant by the model could influence the performance of a TOPMS, such variability was deemed beyond the scope of this preliminary investigation of a TOPMS designed specifically for the far-northern environment. A device containing a GPS receiver and data acquisition system was designed and certified, then installed in an aircraft operated by an airline servicing far-northern Canadian airports. The data collected in this manner were used to validate the theoretical model. It was concluded that a projection of displacement can be determined to within an uncertainty of fifteen metres in sufficient time to alert the pilot of an unsafe situation.
3

Towards Interoperable Seamless Telemetry Display Environments

Guadiana, Juan M., Manshad, Muhanad S., Morris, Scott A., McKinley, Robert A. 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / This paper discusses the current development of all-in-one telemetry displays. This system provides a self-configuring environment utilizing common telemetry display objects that setup and deploy. Often range display systems require frequent revision to reason with changing requirements. The display is rendered accordingly as a strip-chart equivalent or other element, per requirements from a flight safety officer for example. Our reusable code system approach is based on a novel abstraction of the display elements. The approach may be deployed beyond the decommutation stage as is typically done or interface directly to a plug in software decommutator. This system's plug-and-play functionality facilitates rapid deployment of interoperable Department of Defense (DOD) range displays and recorders.
4

Flight Safety System for Unmanned Air Vehicle

Pérez-Falcón, Tony, Kolar, Ray 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A Flight Safety System (RAFS) for multiple, reliable Unmanned Air Vehicles (UAV’s) capable of flying Over-the-Horizon (OTH) and outside test range airspace. In addition to the flight safety application, the described full-duplex data link is suitable as a backup command and control link for UAV’s, and for sensor control & data exfiltration. The IRIDIUM satellite system was selected to provide the communications link and because of its global coverage and requisite data throughputs. A Risk Reduction activity ensued to quantify IRIDIUM performance. Hardware and software was developed to demonstrate the feasibility of using IRIDIUM in a flight safety scenario.
5

A Constraint-Based Approach to Predictive Maintenance Model Development

Gorman, Joe, Takata, Glenn, Patel, Subhash, Grecu, Dan 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / Predictive maintenance is the combination of inspection and data analysis to perform maintenance when the need is indicated by unit performance. Significant cost savings are possible while preserving a high level of system performance and readiness. Identifying predictors of maintenance conditions requires expert knowledge and the ability to process large data sets. This paper describes a novel use of constraint-based data-mining to model exceedence conditions. The approach extends the extract, transformation, and load process with domain aggregate approximation to encode expert knowledge. A data-mining workbench enables an expert to pose hypotheses that constrain a multivariate data-mining process.
6

FLIGHT SAFETY SYSTEM FOR UNMANNED AIRBORNE VEHICLES (UAVs)

Pérez-Falcón, Tony, Kolar, Ray 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper presents a Flight Safety System (FSS) for multiple, reliable Unmanned Air Vehicles (UAV’s) capable of flying Over-the-Horizon (OTH) and outside test range airspace. Expanded uses beyond flight safety, such as UAV Air Traffic Control, are considered also. This system satisfies the operational requirement for a Hazard Control Communication Channel as well as providing a reverse communications channel to provide Safety Critical Information to the Range Safety Officer (RSO). Upon examining 60 communications candidates, IRIDIUM accessed through a Data Distribution Network (DDN), with ARINC being a potential service provider, is recommended.
7

Criteria for acceptable stick force gradients of a light aeroplane

Bromfield, Michael January 2012 (has links)
During the period 1980 to 2008 there were 359 fatal accidents involving UK registered light aeroplanes of which 36% occurred in visual meteorological conditions. In all, 216 lives were lost with accidents being attributed to the pilot 'failing to maintain proper control resulting in a stall or spin'. Dissimilar fatal stallrelated accident rates are evident for aeroplane makes & models of similar design. During the course of this programme of research, flight testing of two similar aeroplane models using a case study method showed marked differences in the variation of stick force with airspeed or stick force gradient in all flight conditions. This suggested that 'control feel' was a contributory factor towards the pilot’s failure to maintain proper control. Current certification standards for light aeroplanes rely upon the subjective assessment of stick force gradients by test pilots, requiring that substantial changes in airspeed are accompanied by clearly perceptible changes in stick force with no specified minimum gradient. This programme of research has been carried out to determine acceptable criteria for stick force gradients of a light aeroplane in all flight conditions. Criteria has been determined from flight tests of aeroplanes with different in-service safety records and subjective pilot workload assessment using simulated flying tasks with different stick force gradients performed by twenty GA pilots. Simulation tests indicated that pilot mental demand increased significantly (p > 0.05) when stick force gradient was reduced to ‘zero’, representing an aeroplane with neutral longitudinal static stability. A predictive model has been developed to estimate stick force gradients for a light aeroplane in any flight condition under quasi-static, longitudinal, non-manoeuvring flight and 1-g loading conditions. The model builds upon previous published work limited to cruising flight, and enables the estimation of stick forces and gradients due to high lift devices in the climb and landing condition by consideration of the combined effects of wing loading, CG, elevator gearing, flaps and elevator trim setting. Implemented using MATLAB, the model has been validated by comparing with flight test results for the case study aeroplanes and showed mean differences of ±0.025 daN/kt. The predictive model should be used in preliminary aeroplane design to assess tendencies towards neutral stability in high workload, safety critical flight conditions such as the take-off and landing. In addition, the model should be used to analyse existing aeroplanes with comparatively low or neutral stick force gradients in safety critical flight phases and to predict the effects of changing CG and/or flap limits to increase stick force gradient and improve control feel. The combined results of these studies suggest that a minimum acceptable stick force gradient for a non-aerobatic light aeroplane in all flight conditions should be nonzero and between 0.10~0.13 daN/kt. A stable and predictable stick force variation with airspeed will ensure that any substantial deviation from trimmed airspeed is accompanied by a stick force change clearly perceptible to the pilot and also provide additional warning of the proximity to the stall. The use of specific criteria to complement qualitative test pilot opinion, will assist in confirming compliance and provide consistency with current standards for sailplanes/powered sailplanes and large commercial aeroplanes, both of which already have defined minimum acceptable gradients.
8

Consciência situacional em voo de sistemas aéreos não tripulados / Unmanned aerial vehicles in flight awareness

Mattei, André Luiz Pierre 27 July 2015 (has links)
Este trabalho apresenta os principais conceitos de um modelo de referência, chamado de Consciência Situacional em Voo (In-Flight Awareness, IFA), e sua implementação embarcada IFA2S (In-Flight Awareness Augmentation System). IFA é um conceito novo e realista e voltado à melhoria da segurança de voo de VANTs. IFA2S tem o potencial de alavancar confiabilidade dos VANTs aos níveis encontrados na aviação geral. Ele aumenta a consciência aeronave tanto em relação a si mesma e seu ambiente circundante e, ao mesmo tempo reconhece restrições da plataforma para agir de acordo com algoritmos de decisão pré-definidos. Este trabalho apresenta o IFA como consequência dos requisitos de segurança estabelecidos através da metodologia STPA, faz uma avaliação quantitativa do impacto do IFA2S no risco operacional dos VANTs e apresenta orientações de implementação em hardware. Simulações de validação são realizadas com uso do software Labview e do simulador de voo XPlane. / This work presents the key concepts of IFA, In-Flight Awareness, and its implementation IFA2S (In-Flight Awareness Augmentation System). IFA is a novel and realistic concept intended to enhance flight safety. IFA2S has the potential to leverage UAVs reliability to the levels of general aviation aircraft. It increases aircraft awareness regarding both itself and its environment and, at the same time recognizes platform constraints to act in accordance to predefined decision algorithms. This paper presents the IFA as a consequence of the safety requirements established using STPA methodology, a quantitative assessment of the impact of IFA2S in the operational risk of UAVs as well as suggestions for hardware implementation. Simulations are carried out using Labview software and the flight simulator XPlane.
9

Consciência situacional em voo de sistemas aéreos não tripulados / Unmanned aerial vehicles in flight awareness

André Luiz Pierre Mattei 27 July 2015 (has links)
Este trabalho apresenta os principais conceitos de um modelo de referência, chamado de Consciência Situacional em Voo (In-Flight Awareness, IFA), e sua implementação embarcada IFA2S (In-Flight Awareness Augmentation System). IFA é um conceito novo e realista e voltado à melhoria da segurança de voo de VANTs. IFA2S tem o potencial de alavancar confiabilidade dos VANTs aos níveis encontrados na aviação geral. Ele aumenta a consciência aeronave tanto em relação a si mesma e seu ambiente circundante e, ao mesmo tempo reconhece restrições da plataforma para agir de acordo com algoritmos de decisão pré-definidos. Este trabalho apresenta o IFA como consequência dos requisitos de segurança estabelecidos através da metodologia STPA, faz uma avaliação quantitativa do impacto do IFA2S no risco operacional dos VANTs e apresenta orientações de implementação em hardware. Simulações de validação são realizadas com uso do software Labview e do simulador de voo XPlane. / This work presents the key concepts of IFA, In-Flight Awareness, and its implementation IFA2S (In-Flight Awareness Augmentation System). IFA is a novel and realistic concept intended to enhance flight safety. IFA2S has the potential to leverage UAVs reliability to the levels of general aviation aircraft. It increases aircraft awareness regarding both itself and its environment and, at the same time recognizes platform constraints to act in accordance to predefined decision algorithms. This paper presents the IFA as a consequence of the safety requirements established using STPA methodology, a quantitative assessment of the impact of IFA2S in the operational risk of UAVs as well as suggestions for hardware implementation. Simulations are carried out using Labview software and the flight simulator XPlane.
10

MISSILE FLIGHT SAFETY AND TELEMETRY AT WHITE SANDS MISSILE RANGE

NEWTON, HENRY L. 11 1900 (has links)
International Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Missile Flight Test Safety Managers (MFTSM) and other flight safety personnel at White Sands Missile Range (WSMR) constantly monitor the realtime space position of missile and airborne target vehicles and the telemetered missile and target vehicle performance parameters during the test flight to determine if these are about to leave Range boundaries or if erratic vehicle performance might endanger Range personnel, Range support assets or the nearby civilian population. WSMR flight safety personnel rely on the vehicle telemetry system to observe the Flight Termination System (FTS) parameters. A realtime closed loop that involves the ground command-destruct transmitter, the vehicle command-destruct receiver (CDR), other FTS components, the missile S-band telemetry transmitter, and the ground telemetry acquisition/ demultiplex system is active when the vehicle is in flight. The FTS engineer relies upon telemetry to provide read-back status of the flight termination system aboard the vehicle. WSMR flight safety personnel use the telemetry system to assess realtime airborne vehicle systems performance and advise the MFTSM. The MFTSM uses this information, in conjunction with space position information provided by an Interactive Graphics Display System (IGDS), to make realtime destruct decisions about missiles and targets in flight. This paper will aid the missile or target developer in understanding the type of vehicle performance data and FTS parameters WSMR flight safety personnel are concerned with, in realtime missile test operations.

Page generated in 0.2846 seconds