• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flower abscission in potted Plectranthus.

Rice, Laura Jane. 07 November 2013 (has links)
Transport and post-harvest handling of flowers both cut and potted is one of the greatest challenges in the horticulture industry (REDMAN et al., 2002). Ethylene-induced flower abscission is responsible for the loss of crops (KIM et al., 2007). Flower abscission is greater when plants are transported (ABEBIE et al., 2005). This limits the sale of flowers and potted plants to areas close to the site of production and prevents export opportunities. South Africa is home to many spectacular species with great horticultural potential (RICE et al., 2011). Unfortunately however, development of a number of these species for export is difficult due to transport-induced flower abscission. Transport-induced flower abscission is a problem experienced by Dr Gert Brits, a breeder of Plectranthus in Stellenbosch in South Africa. In this study a number of Dr Brits’s Plectranthus varieties were used as model plants to understand the process of transport-induced flower abscission and develop a protocol for the prevention of such abscission. Flow cytometry was used to determine the ploidy levels of each of the varieties. It was important to be aware of this during the experiments as varieties with different ploidy levels have been reported to behave differently under stressful environmental conditions. Of the eight varieties examined, three were diploid (2n), one was triploid (3n), three were tetraploid (4n) and one was a mixopliod (2n/4n) variety. To determine the effects of packaging plants during transport and the effects of darkness on flower abscission, plants were packaged into perspex chambers and kept either in a 16 h photoperiod or in darkness for 96 h. Every 24 h the number of open and unopened flowers that had abscised was recorded. Both packaging and darkness increased flower abscission of open and unopened flowers in all eight varieties. Four varieties preferentially abscised open flowers; while the remaining four preferentially abscised unopened flowers. All eight varieties were exposed to different concentrations of ethylene (0, 0.1, 0.25 0.5, 1 and 2 μll-1) to determine their level of ethylene sensitivity. All of the Plectranthus varieties were determined to be extremely sensitive to ethylene. With 100% flower abscission occurring within 24 h at 1 and 2 μll-1 in all varieties. In order to determine what internal changes were causing this increase in flower abscission under these conditions, the changes in the expression of key ethylene biosynthetic enzymes, cytokinin content and carbohydrates in the flowers were examined. ACS and ACO are the two key enzymes in the ethylene biosynthetic pathway (JOHNSON & ECKER, 1998). Changes in the levels of mRNAs coding for these two enzymes were examined when plants were packaged and put into the dark. In general there was an upregulation of the ethylene biosynthetic pathway and in turn this may have increased ethylene production by the plants under simulated transport conditions. However, the changes were not large enough to be solely responsible for the increased flower abscission observed under simulated transport conditions. The concentrations of 43 cytokinins were measured in pedicle tissue from plants which had been kept in the dark for 0, 24, 48, 72 and 96 h. Of the 43 cytokinins measured 21 were below the level of detection. Concentrations for the remaining 22 cytokinins at each of the time points were examined and it was found that in general cytokinin concentrations increase when plants are packaged and put into the dark. DHZ-type cytokinins remained stable during the 96 h continuous dark monitoring period, with most of the changes observed in the tZ and iP types. Peaks in cytokinin concentrations are often followed by an increase in flower abscission, indicating that an increase in cytokinin concentrations may be one of the factors causing the increase in transport-induced flower abscission. Only glucose and fructose were detected in peduncle tissue. Changes in glucose and fructose over 24 h in the greenhouse and over 0, 24, 48, 72 and 96 h in simulated transport conditions were measured. During the day, glucose and fructose levels increased towards the afternoon and evening and decreased in the early morning. This is consistent with studies conducted on other species (ALONI et al., 1996). When plants were put into the dark, glucose and fructose levels increased slightly at 24 h and then decreased to levels similar to those measured in control plants. Although there were changes in glucose and fructose level in simulated transport conditions, they were very slight and it is unlikely that these changes are not responsible for the transport-induced flower abscission. These results suggest that the observed transport-induced flower abscission is the result of increased cytokinin concentrations and expression of ACO and ACS genes when plants are packaged and put into the dark. These changes in turn cause an increase in ethylene production by the plants, and the build-up of ethylene in the transport container causes flowers to abscise. Ethylene perception by the plant is the step which could be targeted to prevent flower abscission. A number of ethylene antagonists block the ethylene receptors in the plant and in so doing prevent the receptors from binding ethylene and transducing the abscission signal. 1-MCP isone such ethylene antagonist. To test whether 1-MCP could be used for the prevention of flower abscission in Plectranthus, plants were placed in sealed perspex chambers in the light and in the dark and treated with 100 nll-1 1-MCP for a single 6 h treatment, or for 6 h every day prior to continuous exposure to ethylene. 1-MCP treatment greatly reduced ethylene- and transport-induced flower abscission when plants were treated continuously, but reduced flower abscission for the first 24 h when pre-treated with a single 6 h exposure to 1-MCP.Transport-induced flower abscission in Plectranthus is the result of exposure to ethylene. The increase in ethylene production by the plants in transport conditions is likely due to an upregulation of the ethylene biosynthetic pathway and an increase in cytokinin concentrations or movement in the pedicle tissue. This transport-induced flower abscission can be prevented by continuous treatment with 100 nll-1 1-MCP during the transport period. By using 1-MCP plants can be transported for up to 4 d and the opportunity for export is made possible. / Thesis (Ph.D.)-University of KwaZulu-Natal, Piertermaritzburg, 2013.
2

Effect of pruning on economic biomass production of Protea cv. Carnival

Gerber, Audrey I. (Audrey Inga) 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 1994. / Some digitised pages may appear illegible due to the condition of the Microfiche / ENGLISH ABSTRACT: Many Proreaceae species indigenous to South Africa have potential as cutflower crops. Commercial production of proteas for expurt, mainly to Europe, must emphasise quality of flowers and time of production. Good export quality flowers have stems longer than 50cm and unblemished flowers. Cut-flower proteas are in greater demand and command better prices during the European winter (September to May, Southern hemisphere), when competition from flowers grown in Europe is less. Both quality and time of harvest can be manipulated by pruning techniques. Protea cv. Carnival (a natural hybrid, possibly between P. neriifolia and P. compacta) produces flowers in late summer, from February through to May. Picking flowers or pruning shoots of Proteo cv. Carnival entails removing the terminal portion of shoots with heading cuts to leave on the plant short stumps, known as bearers. Lateral shoots arising from axillary buds on bearers elongate by successive growth flushes until flowers are initiated terminally. The characteristics of the shoot determine whether or not flower initiation will take place, and will affect the quality of the resulting flower. Plants were pruned to produce bearers of different length and diameter. The characteristics of shoots arising from different bearers were recordea. Thick bearers of length 20-25cm produced the most shoots, and the longest shoots. Plants producing flowers biennially, rather than ann'Jally, produced thicker bearers, which, in turn, lead to production of better quality shoots arising from the bearers in the following season. Changing the time of pruning changed both the flowering cycle and the biomass allocation of Prorea cv. Carnival. Plants of Profea cv. Carnival were pruned on six different dates in 1991. Pruning in March, April or May, 1991, resulted in an annual flowering cycle. Less than 40% of the fresh mass produced in 1993 was reproductive, of which approximately 5% had stems long enough for export. The 1994 annual harvest was of s:milar size and quality as the 1993 annual harvest. Pruning in July, August or September, 1991, resulted in a biennial cycle of flowering. No flowers were produced in 1992, and a large crop was harvested in 1993. In 1993 lip to 70% of the fresh mass produced was reproductive, of which approximately 80% had stems long enough for export. Plants were pruned shortly after flowering in 1993, and the biennial cycle was replaced by an alternate flowering cycle, with a large crop being followed by a smaller crop. The large harvest in 1993 was significantly earlier than normal, but the small crop produced in 1994 was later. The harvest in 1994 from plants with an alternate flowering cycle was similar in size to the 1994 harvest from plants floweting annually, but flower stems were longer. / AFRIKAANSE OPSOMMING: Heelwat inheemse Proteaceae spesies besit die vereiste eienskappe om as snyblomr.-le verhanctci te wod. Indien proteas kommersieel verbou sou word vir uitvoer moet die klem val op gehalte van blomme en die tyd van produksie. Goeie gehalte uitvoer blomme moet steellengte van langer as 50cm en perfek gevormde blomme besit. Daar is 'n groter aanvraag na kommersieel verboude proteas gedurende die Europese winter (September tot Mei, suidelike halfrond) en beter pryse word derhalwe ook dan verkry. Beide gehalte en die oes periode kan gemanipuleer word deur snoeitegnieke. Wanneer blomme gepluk word of lote gesnoei word van Profea cv. Carnival (waarskynlik 'n kruising tussen P. compacta x P. neriifolia) word die terminale gedeelte van die loot teruggesny. Die oorblywende gedeelte bestaan uit kort stompe wat bekend staan as draers. Laterale lote afkomstig van okselknoppe op draers verleng totdat 'n blom terminaal ontwikkel. Die eienskappe van die loot bepaal of 'n blom inisieer sal word of nie, en sal ook die gehalte van die gevormde blom beinvloed. Protea plante was gesnoei om draers van verkillende lengtes en deursnee te produseer. Die eienkappe van lote afkomstig van die verskillende tipe draers was gemeet. Dik ..draers van lengte 20-25cm het die meeste asook die langste lote geproduseer. Plante wat twee-jaarliks, in teenstelling met jaarliks, geblom het, het dikker draers geproduseer en ook gelei tot produksie van beter gehalte lote in die opeenvolgende seisoen. Die verandering in die tyd van snoei het beide die blom siklus en die biomassa verspreiding beinvloed. Plante van Protea cv. Carnival was up 6 verskillende datums in 1991 gesnoei. Snoei in Maart, April of Mei, 1991, het 'n jaarlikse blom siklus veroorsaak. Minder as 40% van die vars massa geproduseer in 1993 was reproduktief, waarvan 5% steellengte lank genoeg vir uitvoer gehad hel. Die 1994 jaarlikse oes was van dieselfde grootte en gehalte as die van 1993. Snoei in Julie, Augustus of September, 1991, het egter 'n twee-jaarlikse blom siklus veroorsaak. Geen blomme was in 1992 geproduseer nie, maar die oes in 1993 was heelwat groter as die jaarlikse oeste. In 1993 was to 70% van die vars massa geproduseer, reproduktief, waarvan 80% steellengte lank genoeg vir uitvoer gehad het. Die twee-jaarlikse blom siklus het 'n vroeer oes in 1993 veroorsaak, maar 'n later oes in 1994. Die twee-jaarlikse oes in 1994 was van dieseifde grootte as die jaarlikse oes in 1994, maar die blomstele was langer.

Page generated in 0.0828 seconds