• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluorodenitration and related reactions

Adams, David J. January 1998 (has links)
No description available.
2

Fluorinated building blocks

Cooper, Julian A. January 2000 (has links)
Julian A Cooper This work describes the functionalisation of carbon-hydrogen bonds in saturated hydrocarbons via free radical addition to fluorinated alkenes. For example, hexafluoropropene can be added to produce a mono-adduct:- A range of fluoroalkenes have been used. These adducts can be functionalised by elimination of hydrogen fluoride to give new fluoroalkenes whose chemistry has been investigated. This has resulted in new fluorinated building blocks.
3

Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts

Aseri, Abdullah January 2012 (has links)
The effect of fluorine on the solubilities of Mn-columbite (MnNb2O6), Mn-tantalite (MnTa2O6), zircon (ZrSiO4) and hafnon (HfSiO4) were determined in highly fluxed, water-saturated haplogranitic melts at 800 to 1000 °C and 2000 bars. The melt corresponds to the intersection of the granite minimum with the albite-orthoclase tieline (Ab72Or28) in the quartz-albite-orthoclase system (Q-Ab-Or) due to the addition of P2O5 to the melt. The melt content of P2O5 is 1.7 wt. %, and also contains 1.1 and 2.02 wt. % of Li2O and B2O3, respectively. The composition of the starting glass represents the composition of melts from which rare-elements pegmatites crystallized. Up to 6 wt. % fluorine was added as AgF in order to keep the aluminum saturation index (ASI) of the melt constant. In an additional experiment F was added as AlF3 to make the glass peraluminous. The nominal ASI (molar Al/[Na+K]) of the melts is close to 1 and approximately 1.32 in peraluminous glasses, but if Li considered as an alkali, the ASI of the melts are alkaline (0.85) and subaluminous (1.04), respectively. The solubility products [MnO]*[Nb2O5] and [MnO]*[Ta2O5] are nearly independent of the F content of the melt, approximately 18.19 ± 1.2 and 43.65 ± 2.5 x10-4 KSP (mol2/kg2), respectively. By contrast, there is a positive dependence of zircon and hafnon solubilities on the fluorine content, which increases from 2.03 ± 0.03 x10-4 (mol/kg) ZrO2 and 4.04 ± 0.2 x10-4 (mol/kg) HfO2 for melts with 0 wt. % F to 3.81 ± 0.3 x10-4 (mol/kg) ZrO2 and 6.18 ± 0.04 x10-4 (mol/kg) HfO2 for melts with 8 wt. % F. Comparison of the data from this work and previous studies indicates that ASI of the melt seems to have a stronger effect than the contents of fluxing elements in the melt and the overall conclusion is that fluorine is less important (relative to melt compositions) than previously thought for the control on the behavior of high field strength elements in highly evolved granitic melts. Moreover, this study confirms that although Nb, Ta, Zr and Hf are all high field strength elements, Nb-Ta and Zr-Hf are complexed differently.
4

Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts

Aseri, Abdullah January 2012 (has links)
The effect of fluorine on the solubilities of Mn-columbite (MnNb2O6), Mn-tantalite (MnTa2O6), zircon (ZrSiO4) and hafnon (HfSiO4) were determined in highly fluxed, water-saturated haplogranitic melts at 800 to 1000 °C and 2000 bars. The melt corresponds to the intersection of the granite minimum with the albite-orthoclase tieline (Ab72Or28) in the quartz-albite-orthoclase system (Q-Ab-Or) due to the addition of P2O5 to the melt. The melt content of P2O5 is 1.7 wt. %, and also contains 1.1 and 2.02 wt. % of Li2O and B2O3, respectively. The composition of the starting glass represents the composition of melts from which rare-elements pegmatites crystallized. Up to 6 wt. % fluorine was added as AgF in order to keep the aluminum saturation index (ASI) of the melt constant. In an additional experiment F was added as AlF3 to make the glass peraluminous. The nominal ASI (molar Al/[Na+K]) of the melts is close to 1 and approximately 1.32 in peraluminous glasses, but if Li considered as an alkali, the ASI of the melts are alkaline (0.85) and subaluminous (1.04), respectively. The solubility products [MnO]*[Nb2O5] and [MnO]*[Ta2O5] are nearly independent of the F content of the melt, approximately 18.19 ± 1.2 and 43.65 ± 2.5 x10-4 KSP (mol2/kg2), respectively. By contrast, there is a positive dependence of zircon and hafnon solubilities on the fluorine content, which increases from 2.03 ± 0.03 x10-4 (mol/kg) ZrO2 and 4.04 ± 0.2 x10-4 (mol/kg) HfO2 for melts with 0 wt. % F to 3.81 ± 0.3 x10-4 (mol/kg) ZrO2 and 6.18 ± 0.04 x10-4 (mol/kg) HfO2 for melts with 8 wt. % F. Comparison of the data from this work and previous studies indicates that ASI of the melt seems to have a stronger effect than the contents of fluxing elements in the melt and the overall conclusion is that fluorine is less important (relative to melt compositions) than previously thought for the control on the behavior of high field strength elements in highly evolved granitic melts. Moreover, this study confirms that although Nb, Ta, Zr and Hf are all high field strength elements, Nb-Ta and Zr-Hf are complexed differently.
5

A thermogravimetric study of the reactions of molybdenum and tungsten disilicides with anhydrous hydrogen fluoride and fluorine

Gama, Jabulani Selby 13 July 2012 (has links)
A study of the reactions between molybdenum and tungsten disilicide (MoSi2 and WSi2) with anhydrous hydrogen fluoride and fluorine was carried out to investigate the chemical behaviour of the materials. These two compounds were used as alternatives that resemble the chemical behaviour of uranium silicide (U3Si2). An extensive literature survey of U3Si2 processing techniques is included, which guided the process selection for this work. The thermogravimetric results of a study into the dry fluorination of molybdenum and tungsten disicilides using both anhydrous hydrogen fluoride and dilute fluorine gas as fluorinating agents are reported. For both solids the observed reactions with fluorine follow the thermodynamically predicted routes, in which the formation of the volatile metal hexafluorides, along with gaseous silicon tetrafluoride was observed. The disilicides get fully converted at roughly 300 to 400 °C respectively. The expected products for the reactions of both solids with hydrogen fluoride are solid tungsten metal, solid molybdenum metal, hydrogen gas, and gaseous silicon tetrafluoride. The metal fluorides (WF4 and MoF3) were not obtained because they form at low temperatures only. Therefore the metals of molybdenum and tungsten were obtained as final products respectively from both reactions; and were verified with the aid of XRF and XRD analyses. Mass-transfer phenomena are shown to play a role in the reactions between hydrogen fluoride and both disilicides, preventing unrestrained complete fluorination of the two solids. Kinetic parameters are reported and the rate limiting mechanisms identified. Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Chemical Engineering / unrestricted

Page generated in 0.0429 seconds