• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Investigation of Crossflow Velocity and Off-the-Surface Streamtrace Topology for a Moderately Swept Wing at Transonic Mach Numbers

Waclawicz, Kevin 13 September 2001 (has links)
The purpose of this thesis is to investigate the crossflow and off-the-surface velocity traces on a moderately swept wing at transonic Mach numbers. Computational Fluid Dynamics (CFD) was used to generate the data used to visualize the flow field. This was done for angles of attack of 6, 7, 8 and 10 degrees at a Mach number of 0.8. An overview of flow topology and singular point theory is given as a means to describe the flow field and describe the differences between it at various angles of attack. After performing an investigation of the crossflow velocity traces it was verified that the use of a line of separation in the flow topology as an indication for flow separation is a necessary condition. It was also found that the crossflow topology is more sensitive to shock location than to angle of attack. It has been verified that a line of separation, as defined by Tobak and Peake [ref 1], in the crossflow is an indication that separation may be present on the surface of the wing. Furthermore, shocks complicate the crossflow. In all of the cases the crossflow just aft of a shock becomes much more complex than it was before the shock. New singular points appear and interactions between singular points arise. As angle of attack is increased the flow topology changes critically only in the change from 6 to 7 degrees. This is the range in angle of attack in which a sudden shift in the location of the shock occurs, so it may be postulated that for this wing the flow topology is more sensitive to shock location as opposed to angle of attack. Comparing the topology between the 7, 8 and 10 degree cases, supports this hypothesis as the topology is similar before and after the shock for each case. The flow topology for each case before the shock is much different then the topology just aft of the shock. The investigation of off-the surface traces has shown that as angle of attack is increased the area of separated flow not only grows but also becomes more complex. For the 6 degree angle of attack case, the region of separated flow was concentrated near the surface and as one moved off the surface the flow quickly returned to the attached flow direction with no singular points. This was the case for the 7 degree angle of attack case only the flow did not reattach until after one moved approximately 0.25 feet off the surface. As the angle of attack was increased the distance off the surface in which the flow returned to moving in the downstream direction increased. Furthermore, as angle of attacked was increased the number of singular points and their intensity grew. It was also verified that in all of the cases investigated the presence of a line of separation was an indication of separated flow. Moreover, in all but two cases there were two lines of separation. One located along the furthest outboard and inboard area of the separated region. No lines of separation were observed in or around attached flow, thus the lines of separation may not only indicate that separation is present but in fact give a location for the separated region. / Master of Science
2

Investigation of the Flow Topology around a Simplified Two-wheel Landing Gear with Emphasis on the Stagnation Point

Feltham, Graham 22 November 2013 (has links)
Experiments were conducted in a recirculating water channel to determine the flow topology around a simplified two-wheel landing gear model. Both hydrogen bubble visualization and Particle Image Velocimetry techniques were employed. The Reynolds number based on wheel diameter was 32,500. The general flow topology was characterized for several wheel configurations. Previously undiscovered structures have been found in several regions of the flow field, and their behavior was found to depend strongly on the geometry of the wheels. The phenomena of vorticity amplification near the stagnation point of the wheels was also studied. Weak upstream vorticity was found to collect, grow, and amplify into large coherent structures which then shed in a regular manner. The size, location, and shedding frequency of these structures has been characterized. The impingement point of the upstream vorticity was found to dictate the dynamics of the phenomena.
3

Investigation of the Flow Topology around a Simplified Two-wheel Landing Gear with Emphasis on the Stagnation Point

Feltham, Graham 22 November 2013 (has links)
Experiments were conducted in a recirculating water channel to determine the flow topology around a simplified two-wheel landing gear model. Both hydrogen bubble visualization and Particle Image Velocimetry techniques were employed. The Reynolds number based on wheel diameter was 32,500. The general flow topology was characterized for several wheel configurations. Previously undiscovered structures have been found in several regions of the flow field, and their behavior was found to depend strongly on the geometry of the wheels. The phenomena of vorticity amplification near the stagnation point of the wheels was also studied. Weak upstream vorticity was found to collect, grow, and amplify into large coherent structures which then shed in a regular manner. The size, location, and shedding frequency of these structures has been characterized. The impingement point of the upstream vorticity was found to dictate the dynamics of the phenomena.
4

The Domain Dependence of Chemotaxis in a Two-Dimensional Turbulent Flow

January 2015 (has links)
abstract: Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. How the flow field and the relevant flow topology lead to such a relation is analyzed. / Dissertation/Thesis / Masters Thesis Mathematics 2015
5

Virtual Planar Motion Mechanism Testing of 8:1 Spheroids

Ball, Eddie H. 23 June 2015 (has links)
PMM testing is a method used to identify the added mass and damping coefficients used in the equations of motion of a vehicle by attempting to decouple the forces on a body due to velocity and acceleration as a result of creating "hydrodynamically pure" velocities and accelerations. This makes it possible to use quasi-steady state models with terms independent of both velocity and acceleration. This paper explores the ability of simple damping models (solely a function of velocity) with added mass terms (solely a function of acceleration) to simulate the heave force of an 8:1 ellipsoid undergoing PMM testing. In order to help explain the complexity of the flow during PMM tests, a flow analysis of the 8:1 spheroid is provided, which discusses the flow topology of spheroids at steady angle of attack, validity of quasi-steady models, and some other basic flow features seen in PMM testing. In this paper, a simple proportionality relationship between a linear and quadratic damping model is revealed. It is also shown that variations in the heave force response during PMM tests are most heavily influenced by viscous effects, especially cross flow separation. Finally, it is shown where these models break down, owing to the increasing nonlinearity of the flow induced by the harsher motions of large amplitude and/or large frequency tests. / Master of Science
6

Étude numérique et expérimentale de l'écoulement turbulent au sein des passes à poissons à fentes verticales. Analyse de l'écoulement tridimensionnel et instationnaire / Numerical and experimental study of turbulent flow in vertical slot fishway. Analysis of the three-dimensional and unsteady flow

Ballu, Aurélien 20 March 2017 (has links)
L'objectif de cette thèse est de caractériser l'influence de la présence d'obstacles dans les passes à poissons à fentes verticales. Deux types d'éléments sont couramment insérés, à l'heure actuelle, dans les passes : les seuils et les macro-rugosités. Dans un premier temps, l'effet de ces deux dispositifs à la fois sur l'écoulement et sur le comportement des poissons est étudié. Dans le but de favoriser le passage des petites espèces à travers le dispositif de franchissement, une solution technique est ensuite proposée, sous la forme de plusieurs rangées de cylindres flexibles placées en sortie de fente. La caractérisation du comportement hydraulique d'une passe à poissons équipée de ces obstacles est effectuée par des mesures expérimentales de niveau d'eau à l'aide de sondes acoustiques et des mesures de vitesses tridimensionnelles avec un vélocimètre acoustique à effet Doppler (ADV). La base de données générée par ces mesures est ensuite utilisée pour définir une loi de dimensionnement, qui prend en compte les paramètres influençant le fonctionnement hydraulique de l'ouvrage en vue d'améliorer sa conception. Les simulations numériques 3D instationnaires URANS et LES de l'écoulement permettent une analyse volumique fine des grandeurs caractéristiques de la turbulence qui règne dans les bassins en fonction du type d'obstacle inséré. En obstruant une partie de la fente, la présence d'un seuil accentue la tridimensionnalité de l'écoulement tandis que les macro-rugosités créent une zone de plus faible vitesses et des abris utilisables par les espèces de fonds. L'insertion des structures souples permet une meilleure dissipation de l'énergie du jet et réduit l'énergie cinétique turbulente dans une partie du volume des bassins. Les manipulations réalisées avec différentes espèces de poissons, permettent de mieux comprendre l'effet de la modification des grandeurs cinématiques de l'écoulement, par l'insertion d'obstacles, sur le comportement des poissons pour pouvoir adapter les passes à poissons existantes aux espèces dotées de faibles capacités de nage. / The aim of this work is to characterize the influence of two kinds of obstacles, sills and macro-roughnesses, on the flow inside a vertical slot fishway (VSF) and the behavior of several species of fish. Another objective is to study a technical solution to allow the passage of small fish species, which take the form of flexible cylinders placed in the jet at the entrance of each pool of the VSF. A hydraulic characterization is made by experimental measurements of the water level in each pool with acoustic sensors and by measurements of three-dimensional velocity components with an acoustic Doppler velocimeter (ADV). The data acquired by these measurements are then used to define a predictive law that takes into account the presence of sills or macro-roughnesses, to help the design of devices that are as efficient as possible. Unsteady RANS and LES three-dimensional numerical simulations of the flow allow performing a careful volume analysis of the turbulence characteristics inside the pools when obstacles are presents in the flow. By obstructing a part of the slot, sills enhance the three-dimensionality of the flow while macro-roughnesses generate a low velocity layer and shelters for benthic species. Flexible elements produce a better dissipation of the energy of the jet and reduce the turbulent kinetic energy in a part of the volume of the pools. The effect of the modification of the flow kinematic properties, by the presence of obstacles, on the behavior of various fish species is evaluated. It provides important insights on how to adapt the flow in existing fishways to fish species with low swimming capacity.

Page generated in 0.0574 seconds