• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conditional Streamflow Probabilities

Roefs, T. G., Clainos, D. M. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / Streamflows of monthly or shorter time periods, are, in most parts of the world, conditionally dependent. In studies of planning, commitment and operation decisions concerning reservoirs, it is probably most computationally efficient to use simulation routines for decisions of low dimensions, as planning and commitment, and optimization routines for the highly dimensional operation rule decisions. This presents the major problem of combining the 2 routines, since streamflow dependencies in simulation routines are continuous while the direct stochastic optimization routines are discrete. A stochastic streamflow synthesis routine is described consisting of 2 parts: streamflow probability distribution and dependency analysis and a streamflow generation using the relationships developed. A discrete dependency matrix between streamflow amounts was then sought. Setting as the limits of interest the class 400-500 thousand acre ft in January and 500-600 thousand acre ft in February, and using the transforms specified, the appropriate normal deviates were determined. The next serious problem was calculating the conditional dependency based on the bivariate normal distribution. In order to calculate the joint probability exactly, double integrations would be required and these use too much computer time. For the problem addressed, therefore, the use of 1-dimensional conditional probabilities based on the flow interval midpoint is an adequate and effective procedure.

Page generated in 0.0854 seconds