• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of plasmacytoid dendritic cells in the CD4C/HIV transgenic mouse model

Afkhami-Dastjerdian, Soheila January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Rekombinantní viry vakcinie pro nádorovou terapii, analyza biologickych a biochemickych vlastností. / Recombinant vaccinia virus for cancer therapy, the analysis of biological and biochemical features.

Žůrková, Kamila January 2011 (has links)
151 8 SUMMARY Recombinant vaccinia virus has been used for elicitation of the immune response against expressed heterologous proteins which has led to protection of the host organisms against the agents producing that antigen (viruses, cancer cells). In our laboratory, we designed and evaluated several vaccines against cancer caused by human papillomavirus type 16 (HPV16). Vaccinia viruses derived from replication competent strain P13 or attenuated MVA were used for construction of recombinant viruses expressing HPV16-E7 in highly immunogenic fusion construct SigE7LAMP. Recombinant viruses were used both in prophylactic and therapeutic settings in mouse tumor models using TC-1 or TC-1/A9 cells. The genes encoding stimulatory cytokines GM-CSF or Flt3 ligand were inserted into the above viruses to support the immune system and to potentiate the anticancer response. Tumor microenvironment was modified using the recombinant viruses expressing both the E7 gene and soluble receptor for TGF-β which should decrease the inhibition of immune system caused by tumor TGF-β cytokine and elicit the response against tumor cells. Intratumoral or intraperitoneal administration of viruses enhanced anticancer response in mice, the viruses expressing Flt3 ligand induced the proliferation of E7- specific cytotoxic T lymphocytes....
3

IMPACT OF NONSTRUCTURAL HEPATITIS C VIRUS ANTIGENS AND TOLL-LIKE RECEPTOR AGONISTS ON DENDRITIC CELL IMMUNOGENICITY

2013 August 1900 (has links)
Dendritic cells (DCs) function mainly as antigen presenting cells (APCs) and as such they play a significant role in activating the adaptive immune system. Dendritic cells express toll-like receptors (TLR), and when these receptors are engaged by their cognate agonists, they promote DC maturation, which is critical in the induction of potent T helper (Th) cell -1 responses. Due to the multifunctional abilities of DCs, they have been explored as vaccine carriers, largely in cancer immunotherapy and some infectious diseases including hepatitis C. Previous studies showed that DCs loaded with mRNA of hepatitis C virus (HCV) antigen(s) induced strong immune responses but immune protection was not complete. Therefore, I expected that adoptive transfer of DCs transfected with HCV NS3/4A and/or NS5A mRNA and further treated with TLR agonist(s) ex vivo would induce HCV-specific immunity in vivo. Bone marrow-derived DCs generated with Flt3L (FL-DCs) or GM-CSF (GM-DCs), and loaded with HCV NS3/4A and/or NS5A mRNA showed maturation characteristics and produced substantial amounts of IL-12 after ex vivo activation with CpG ODN or CpG ODN plus Poly I:C, when compared to their untreated counterparts. Treatment with a combination of CpG ODN and Poly I:C synergized to augment IL-12 production in comparison with stimulation with CpG ODN alone. IL-12 secretion by DCs is pivotal in directing immune responses towards a Th1-bias response, which is needed to eliminate HCV. However, the ex vivo responses of stimulated DCs bearing HCV antigen(s) were not efficiently translated in mice to potentiate vigorous antigen-specific T cell responses. This resulted in a lack of protection after challenge with recombinant vaccinia virus expressing HCV NS3/NS4/NS5 in immunized mice. In contrast, both antigen-specific humoral and cell-mediated immune responses were induced in mice vaccinated with HCV recombinant NS3 or NS5A protein co-formulated with CpG ODN, host defense peptide and polyphosphazene. These responses, however, did not mediate viral clearance, as vaccinated mice remained unprotected from infection with recombinant vaccinia virus expressing HCV antigens. Taken together, these results suggest HCV recombinant protein co-formulated with triple adjuvant to be a better vaccine candidate than the DC-based vaccine.

Page generated in 0.0241 seconds