Spelling suggestions: "subject:"fluctuation 1heory off colutions"" "subject:"fluctuation 1heory off 3solutions""
1 |
A Kirkwood-Buff force field for aromatic amino acidsPloetz, Elizabeth Anne January 1900 (has links)
Master of Science / Department of Biochemistry / Paul E. Smith / We are developing a force field (FF) for molecular dynamics (MD) simulations of peptides and small proteins that is grounded in the Kirkwood-Buff theory of solutions. Here we present the Kirkwood-Buff Force Field (KBFF) parameters for the aromatic amino acids, based upon simulations of binary mixtures of small molecules representative of these amino acids over their entire composition ranges (excluding Histidine). Many aromatics are not fully soluble in water, so they have instead been studied in solvents of methanol or toluene. The parameters were developed by studying the following binary solutions: Phenylalanine − benzene + methanol, toluene + methanol, and toluene + benzene; Tyrosine − toluene + phenol and toluene + p-Cresol; Tryptophan − pyrrole + methanol and indole + methanol; Histidine − pyrrole + methanol, pyridine + methanol, pyridine + water, histidine + water (at 0.25 molal), and histidine monohydrochloride + water (at 0.3 molal and 0.6 molal). Our simulations reproduce the Kirkwood-Buff integrals, which guarantees that the KBFF provides an adequate balance of solute-solvent, solute-solute, and solvent-solvent interactions. Additionally, we show that the KBFF does not sacrifice reproduction of other solution properties in order to achieve this improved description of intermolecular interactions. We present these results as validating evidence for the future use of the KBFF in simulations of peptides and small proteins.
|
Page generated in 0.1488 seconds