Spelling suggestions: "subject:"fluid/gravity"" "subject:"tluid/gravity""
1 |
From Petrov-Einstein to Navier-StokesLysov, Vyacheslav 06 June 2014 (has links)
The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. We propose propose two possible approaches to establish this correspondence: perturbative expansion for shear modes and large mean curvature expansion for algebraically special metrics. / Physics
|
2 |
Tópicos da correspondência fluido gravidade em espaços planos / Topics of fluid/gravity correspondence in flat spacesSoares, Gustavo Rodrigues Romano 30 July 2015 (has links)
Nesta dissertação estudamos alguns aspectos da correspondência fluido/gravitação aplicada ao espaço plano em coordenadas de Rindler ingoing. Nosso principal objetivo é estudar o efeito de transformações de Ehlers e simetrias das equações de Einstein no contexto da correspondência fluido/gravitação. Para isso, fazemos uma revisão dos aspectos principais da Relatividade Geral e da Hidrodinâmica, os quais serão empregados ao longo do texto. Damos bastante atenção ao desenvolvimento de um método que permite encontrar soluções da equações de Einstein por meio de uma expansão em derivadas, o qual sera utilizado posteriormente para gerar uma solução-base sobre a qual aplicaremos transformações de Ehlers. Nós mostramos que a métrica de um espaçotempo plano em coordenadas de Rindler ingoing está relacionada a um espaçotempo de Taub por meio de uma transformação de Ehlers e nós utilizamos um método em que nós resolvemos a equação de Killing perturbativamente na expansão no parâmetro $\\epsilon$. Os resultados obtidos com este método não são inteiramente conclusivos, de modo que faz-se necessária uma futura investigação. / In this dissertation we study some aspects of the fluid/gravity correspondence applied to flat space in ingoing Rindler coordinates. Our main goal is to study the effect of Ehlers transformations and symmetries of the Einstein equations in the context of fluid/gravity correspondence. To do so, we review the main aspects of General Relativity and Hydrodynamics which will be employed throughout the text. We devote significant attention to a method that allows us to find solutions to the Einstein equations that by performing a derivative expansion, which will be utilized afterwards to generate our seed solution, upon which we later apply the Ehlers transformations. We show that the metric of flat spacetime in ingoing Rindler coordinates is related to a Taub spacetime by an Ehlers transformation and we utilize an approach in which we solve the Killing equation perturbatively in a parameter expansion. The results obtained by using this approach are not entirely conclusive, and further investigation is still required.
|
3 |
Tópicos da correspondência fluido gravidade em espaços planos / Topics of fluid/gravity correspondence in flat spacesGustavo Rodrigues Romano Soares 30 July 2015 (has links)
Nesta dissertação estudamos alguns aspectos da correspondência fluido/gravitação aplicada ao espaço plano em coordenadas de Rindler ingoing. Nosso principal objetivo é estudar o efeito de transformações de Ehlers e simetrias das equações de Einstein no contexto da correspondência fluido/gravitação. Para isso, fazemos uma revisão dos aspectos principais da Relatividade Geral e da Hidrodinâmica, os quais serão empregados ao longo do texto. Damos bastante atenção ao desenvolvimento de um método que permite encontrar soluções da equações de Einstein por meio de uma expansão em derivadas, o qual sera utilizado posteriormente para gerar uma solução-base sobre a qual aplicaremos transformações de Ehlers. Nós mostramos que a métrica de um espaçotempo plano em coordenadas de Rindler ingoing está relacionada a um espaçotempo de Taub por meio de uma transformação de Ehlers e nós utilizamos um método em que nós resolvemos a equação de Killing perturbativamente na expansão no parâmetro $\\epsilon$. Os resultados obtidos com este método não são inteiramente conclusivos, de modo que faz-se necessária uma futura investigação. / In this dissertation we study some aspects of the fluid/gravity correspondence applied to flat space in ingoing Rindler coordinates. Our main goal is to study the effect of Ehlers transformations and symmetries of the Einstein equations in the context of fluid/gravity correspondence. To do so, we review the main aspects of General Relativity and Hydrodynamics which will be employed throughout the text. We devote significant attention to a method that allows us to find solutions to the Einstein equations that by performing a derivative expansion, which will be utilized afterwards to generate our seed solution, upon which we later apply the Ehlers transformations. We show that the metric of flat spacetime in ingoing Rindler coordinates is related to a Taub spacetime by an Ehlers transformation and we utilize an approach in which we solve the Killing equation perturbatively in a parameter expansion. The results obtained by using this approach are not entirely conclusive, and further investigation is still required.
|
4 |
Field Theories à la Gravity: From Navier-Stokes to Superconductivity.January 2020 (has links)
abstract: Recent developments inspired by string theoretic considerations provide multiple maps between gravitational and non-gravitational degrees of freedom. In this dis- sertation I discuss aspects of three such dualities, the gauge/gravity duality and how it applies to condensed matter systems, the fluid-gravity duality, and the color-kinematics duality.
The first of these, colloquially referred to as holography, in its simplest form posits a mapping of d-dimensional conformal field theory (boundary) partition functions onto d+1 dimensional gravitational(bulk) partition functions, where the space-time carries a negative cosmological constant. In this dissertation I discuss the results of our calculations examining the emergence of Fermi-surface like structures in the bulk spacetime despite the absence of explicit Fermions in the theory.Specifically the 4+1 dimensional Einstein-Maxwell-Chern-Simons theory with scalar degrees of freedom, with and without symmetry breaking is considered. These theories are gravity duals to spatially modulated gauge theories. The results of calculations presented here indicate the existence of a rich phase space, most prominently Fermi shells are seen.
The second set of dualities considered are the color-kinematic duality, also known as the double-copy paradigm and the fluid-gravity duality. The color-kinematic duality involves identifying spin-2 amplitudes as squares of spin-1 gauge amplitudes. This double copy picture is utilized to construct “single copy” representations for space- times where Einstein’s equations reduce to incompressible Navier-Stokes equations. In this dissertation I show how spacetimes that characterize irrotational fluids and constant vorticity fluids each map to distinct algebraically special spacetimes. The Maxwell fields obtained via the double-copy picture for such spacetimes further provide interesting parallels, for instance, the vorticity of the fluid is proportional to the magnetic field of the associated gauge field. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
|
5 |
Environnements gravitationnels, flots et fluides holographiques.Pozzoli, Valentina 20 September 2013 (has links) (PDF)
Différents environnements gravitationnels à 4 dimensions sont abordés dans ce thése : instantons gravitationnels et trous noirs aussi bien en relativité générale qu'en supergravité. La recherche de nouvelles solutions en relativité est un véritable défi. Cette tâche est nettement simplifiée dans l'hypothèse où l'on dispose d'un tenseur de Riemann auto-dual. Ces solutions sont dites instantons gravitationnels. L'évolution des instantons est décrite par un flot géométrique. Ce lien est analysé en détail, en focalisant l'attention sur le rôle du tensor de Ricci dans le flot géométrique. En espace de type Anti-de-Sitter (AdS), trouver de nouveaux trous noirs avec symétrie axiale est une question toujours ouverte. Cette question peut être posée dans le contexte des fluides holographiques. Trous noirs en rotation correspondent à des fluides aux vorticités particulières. En imposant que la solution soit régulière sur l'horizon, le fluide acquiert la forme d'un fluide parfait. Des conditions nécessaires afin que la correspondence entre solution gravitationnelle et théorie hydrodynamique, qui se fait usuellement par un développement perturbatif, puisse être ressommé et pour qu'on puisse trouver des solutions exactes de la relativité ont etées trouvées. Le comptage de l'entropie des trous noirs dans des espaces AdS ne fait toujours pas partie des résultats connus. Dans le cas des solutions en rotation des théories de supergravité N=2, une relation entre trous noirs extremaux non-BPS en espace plat et trous noirs BPS en espace AdS a été mise au point. La connexion entre cettes solutions donne des informations sur le comptage microscopique.
|
Page generated in 0.0611 seconds