• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 37
  • 32
  • 17
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 410
  • 410
  • 88
  • 80
  • 79
  • 74
  • 53
  • 49
  • 48
  • 47
  • 38
  • 37
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Investigation of Seismic Excitation as a Method for Flow Enhancement in Porous Media

Davis, James Leigh Jay January 2008 (has links)
The concept of using dynamic excitation to enhance fluid flow in a porous medium began to arise in the mid-twentieth century. The initial spark of interest in the subject spurred numerous laboratory investigations throughout the latter half of the twentieth century to identify the mechanisms at work, and to develop field techniques for practical application of the technology. Several prominent laboratory and field studies have been published; however, there are some deficiencies that facilitate the need for further investigation. Groundwater flow and soil dynamics are two distinct areas of research. There is little in common between the two subjects and there is no consideration of soil dynamic properties in any of the reviewed papers. This study will attempt to bridge the gap between these two areas of research. The objective of this research is to attempt to determine how dynamic excitation of a soil matrix affects saturated single-phase fluid flow. This question is investigated through an extensive literature review of previous studies conducted on this topic, as well as through experimentation designed to replicate the mechanisms responsible for this phenomenon. Experimentation on coarse soil samples is conducted using a modified Stokoe-type resonant column device that allows a quantification of the effects of torsional and axial excitation, frequency of vibration, and strain level. This type of testing in the both the torsional and axial mode has never been conducted before using a resonant column; the Poisson ratios computed using the complimentary data has never been published in the literature.
92

Control of Fluid Flow and Species Transport within Microchannels of Microfluidic Chips

Shao, Zhanjie January 2008 (has links)
Microfluidic chips have drawn great attention and interest due to their broad applications in chemical, biological and biomedical fields. These kinds of miniaturized devices offer many advantages over the traditional analysis instruments, such as reduced cost, shortened time, increased throughput, improved integration/automation/portability, etc. However, the concept of integrating multiple labs on a single chip to perform micro total analysis hasn’t been realized yet because of the lack of fundamental knowledge and systematic design of each component, especially for some particular applications. A thorough understanding and grasp of the basic physical phenomenon is the theoretical basis to develop functional devices to utilize them. In this study, we intend to investigate the electrokinetic fluid flow and coherent species transport processes in microchannels, and then try to effectively control them for designing related lab-on-a-chip devices. Rather than expensive experiments, numerical studies are performed to simulate the different processes involved in various electrokinetic chip applications. In the theoretical models, applied potential field, flow field and species concentration field are considered and corresponding governing equations with initial/boundary conditions are numerically solved by computational fluid dynamics techniques. The flow field is obtained by the developed SIMPLE algorithm and a slip-wall velocity boundary condition is applied in simulating electroosmotic flow. Grid independence tests and convergence studies are performed to ensure economic computation with adequate accuracy and stability. For every application with typical channel layout, parametric studies are performed to investigate different effects through the controlling parameters linked to them. For surface patterning or microfabrication using laminar flows, various operational parameters are investigated to explore the optimized configurations for multi-stream flow and mass transport control in cross-linked microchannels. Through a series of numerical simulations, it is found that applied potentials, electroosmotic mobilities of solutions and channel dimensions have significant effects on the flow and mass transport after converging in the intersection of channel network. Diffusion coefficient has less influence than the other parameters due to the presence of high Peclet number for such applications. For the microwashing with two different electrolyte solutions, a three-dimensional model is numerically solved to reveal the flow structure change. In a straight microchannel with a rectangle cross section, KCl solution and LaCl3 solution are mainly employed for tests. Displacement processes between two solutions in both orders are tested and analyzed. The observed flow structures such as back flow in channel center and distortion of plug-like velocity profile are noticed and discussed. The distortion of the flow field results from the induced pressure gradient, which is due to the non-uniformity of electroosmotic mobilities and electrical conductivities of two replaced solutions. The bigger difference two solutions have in chemical properties, the stronger effects on flow they have. Effect of applied potential field strength is also studied and the approximate linear influences are concluded. Finally, the unsteady on-chip sample injection and separation processes involved in microchip capillary electrophoresis are studied. Species’ electrophoretic migration effect is included and the theoretical model is non-dimensionalized in a unique manner with the key fundamental parameters: the Re Sci , species’ non-dimensional electrophoretic mobility and applied potentials. The species transport characteristics are revealed numerically and well understood for future effective control and innovative chip design. Species front movement during injection and sample plug development in separation are examined with diffusion effect; results include concentration profiles and contour plots over a range of injection and separation time. The influence of i Re Sc which characterizes the relative role of convection versus diffusion is examined over the commonly encountered range and the diffusion effect is found to have an essentially negligible effect. Through three species, the electrophoretic mobilities difference is demonstrated to be the reason for separation. Real-time monitoring of different species’ movements is performed for injection guidance.
93

Investigation of Seismic Excitation as a Method for Flow Enhancement in Porous Media

Davis, James Leigh Jay January 2008 (has links)
The concept of using dynamic excitation to enhance fluid flow in a porous medium began to arise in the mid-twentieth century. The initial spark of interest in the subject spurred numerous laboratory investigations throughout the latter half of the twentieth century to identify the mechanisms at work, and to develop field techniques for practical application of the technology. Several prominent laboratory and field studies have been published; however, there are some deficiencies that facilitate the need for further investigation. Groundwater flow and soil dynamics are two distinct areas of research. There is little in common between the two subjects and there is no consideration of soil dynamic properties in any of the reviewed papers. This study will attempt to bridge the gap between these two areas of research. The objective of this research is to attempt to determine how dynamic excitation of a soil matrix affects saturated single-phase fluid flow. This question is investigated through an extensive literature review of previous studies conducted on this topic, as well as through experimentation designed to replicate the mechanisms responsible for this phenomenon. Experimentation on coarse soil samples is conducted using a modified Stokoe-type resonant column device that allows a quantification of the effects of torsional and axial excitation, frequency of vibration, and strain level. This type of testing in the both the torsional and axial mode has never been conducted before using a resonant column; the Poisson ratios computed using the complimentary data has never been published in the literature.
94

Turbulent tube flow of dilute fiber suspensions.

Seely, Truman L. 01 January 1968 (has links)
No description available.
95

A Computational fluid dynamics model for transient three-dimensional free surface flows

McKibben, John Ferney 01 January 1993 (has links)
No description available.
96

Measurement of fiber suspension flow and forming jet velocity profile by pulsed ultrasonic doppler velocimetry.

Xu, Hanjiang 08 May 2003 (has links)
The flow of wood fiber suspensions plays an important role during the pulp and paper manufacture process. Considerable research has been carried out in the past 50 years to characterize the fiber suspension flow behavior and to monitor the fiber suspension flow during paper manufacture. However, the above research has been hampered by the lack of techniques to directly characterize fiber suspension flow fields because fibers and fiber flocs tend to interfere with instruments inserted into the flow. The fundamental studies in this thesis concentrated on three parts: (1) examine the feasibility of measuring wood fiber suspension flow by Pulsed Ultrasonic Doppler Velocimetry (PUDV), (2) apply PUDV to characterize fiber suspension flow behavior in a rectangular channel, (3) apply PUDV to measure the forming jet velocity profile along the jet thickness direction (ZD). In the first part, it is demonstrated that PUDV is an accurate technique for the velocity profile measurement of fiber suspension flow. The measurement has high repeatability and sensitivity. Suitable parameters should be selected in order to obtain the optimum measuring results.
97

Investigation of factors contributing to the deposition of contaminants on dryer cylinders

Clarke, Andrew Edward 11 January 2007 (has links)
Pulp from recycled paper products contains various waxes, glues, adhesives, filler, and inorganics that are collectively referred to as contaminants. Contaminants that are not drained out during the forming process are trapped in the sheet and carried down the paper machine. These contaminant particles and contaminants in solution can become deposited on the dryer cylinders. The contaminants which deposit on the dryer cylinders lead to reduced quality and production of paper on the machine. The process by which contaminants are deposited on a dryer cylinder has not been explored at a fundamental level. Rather, quick industrial fixes have been tested to try and eliminate the contaminant deposition and only reductions in deposition have been achieved. The literature reviewed does not relate the flow of particle suspensions through porous media to the heat transfer and fluid dynamics processes associated with drying paper. The experiments in the literature showed the general trends of particle and dye distributions across the thicknesses of different porous media during forming or filtration processes. Filler and fines distribution were not able to be changed by flows induced by pressing a sheet. The mechanisms for how particles move through porous media found in the literature were a basis for what kind of phenomena would be expected in the particle flow experiments. A means of completely eliminating sticky deposits could be found by examining the parameters which contribute to the deposition process. The hypothesis proposed in this thesis is that contaminant particles and liquid containing contaminants are transported to the dryer can surface by liquid flows induced by the drying process. By performing particle flow experiments during drying, bounds for the particle size, initial drying surface temperature, drying time, and initial solids content will be determined for which the hypothesis is true. The particle and dye transport studies performed showed an array of processes at work simultaneously. The results from the particle and dye transport studies show that a particle diameter of ~1.0 and #956;m or less, handsheet solids content of less than 30%, open sheet structure and a high surface drying temperature (200C) were needed to create a significant change in filler and dye distribution across the thickness of a handsheet.
98

Preconditioned solenoidal basis method for incompressible fluid flows

Wang, Xue 12 April 2006 (has links)
This thesis presents a preconditioned solenoidal basis method to solve the algebraic system arising from the linearization and discretization of primitive variable formulations of Navier-Stokes equations for incompressible fluid flows. The system is restricted to a discrete divergence-free space which is constructed from the incompressibility constraint. This research work extends an earlier work on the solenoidal basis method for two-dimensional flows and three-dimensional flows that involved the construction of the solenoidal basis P using circulating flows or vortices on a uniform mesh. A localized algebraic scheme for constructing P is detailed using mixed finite elements on an unstructured mesh. A preconditioner which is motivated by the analysis of the reduced system is also presented. Benchmark simulations are conducted to analyze the performance of the proposed approach.
99

Problems of fluid flow in a deformable reservoir

Diyashev, Ildar 12 April 2006 (has links)
This research is focused on development and enhancement of the model of fluid flow in a formation with stress-dependent permeability. Several typical axi-symmetrical problems of fluid flow in a multi-layered reservoir with account for wellbore storage and skin have been solved numerically. The permeability was assumed to be a function of the vertical deformation of the reservoir. This deformation is the result of changing stress-strain state in the elastic system, comprised of the reservoir itself and the surrounding rock mass. The change in the stress-strain state of the system is induced by pressure change in the layers of the reservoir. Numerical results qualitatively agree with observed field behavior. Such behavior includes (1) deviation of an inflow performance curve from the straight-line relationship at pressures above bubble-point pressure, (2) time- and rate-dependence of well-testing derivative, (3) asymmetry of processes of production and of injection, and (4) inconsistent results between drawdown and buildup, or injection and falloff tests. Based on the results, a procedure to estimate the parameters of the suggested permeability model is proposed.
100

Compression and permeability behavior of natural mudstones

Schneider, Julia, 1981- 25 January 2012 (has links)
Mudstones compose nearly 70% of the volume of sedimentary basins, yet they are among the least studied of sedimentary rocks. Their low permeability and high compressibility contribute to overpressure around the world. Despite their fundamental importance in geologic processes and as seals for anthropogenic-related storage, a systematic, process-based understanding of the interactions between porosity, compressibility, permeability, and pore-size distribution in mudstones remains elusive. I use sediment mixtures composed of varying proportions of natural mudstone such as Boston Blue Clay or Nankai mudstone and silt-sized silica to study the effect of composition on permeability and compressibility during burial. First, to recreate natural conditions yet remove variability and soil disturbance, I resediment all mixtures in the laboratory to a total stress of 100 kPa. Second, in order to describe the systematic variation in permeability and compressibility with clay fraction, I uniaxially consolidate the resedimented samples to an effective stress equivalent to about 2 km of burial under hydrostatic conditions. Scanning electron microscope images provide insights on microstructure. My experiments illuminate the controls on mudstone permeability and compressibility. At a given porosity, vertical permeability increases by an order of magnitude for clay contents ranging from 59% to 34% by mass whereas compressibility reduces by half at a given vertical effective stress. I show that the pore structure can be described by a dual-porosity system, where one rock fraction is dominated by silt where large pores are present and the majority of flow occurs and the other fraction is dominated by clay where limited flow occurs. I use this concept to develop a coupled compressibility-permeability model in order to predict porosity, permeability, compressibility, and coefficient of consolidation. These results have fundamental implications for a range of problems in mudstones. They can be applied to carbon sequestration, hydrocarbon trapping, basin modeling, overpressure distribution and geometry as well as morphology of thrust belts, and an understanding of gas-shale behavior. / text

Page generated in 0.0546 seconds