• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 37
  • 32
  • 17
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 409
  • 409
  • 88
  • 80
  • 79
  • 74
  • 53
  • 49
  • 48
  • 47
  • 38
  • 37
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Computer simulation of a glass furnace

Carvalho, Maria da Graca Martins da Silva January 1983 (has links)
No description available.
72

Analysis of the Hite Fault Group, Southeast Utah: Insights into Fluid Flow Properties in a Reservoir Analog

Curtis, Daniel J. 01 August 2017 (has links)
In the subsurface faults can act as both barriers and conduits for fluids or gases such as CO2, hydrocarbons, or water. It is often thought that faults in porous rocks such as sandstone are barriers to fluid flow. In this study we show that this is not always the case. In sandstones like the Cedar Mesa Sandstone it is very important to understand the relationships between this history of fault slip and fluid flow. Better understanding of how fluids migrate through faults and the damaged areas surrounding these faults has strong significance to the oil and gas industry. In this study we examine a group of faults and their surrounding damage zones near Hite, Utah. We analyze three of these small-scale faults in more detail. In doing so we give insights into how these faults and their damage zones can effect fluid migration as well as the porosity and permeability in the Cedar Mesa Sandstone. Whole rock geochemistry, X-ray diffraction mineralogy, permeability data, petrography, ultraviolet photography, and outcrop observations were used to gain insights into cross-cutting relationships, past fluid compositions, and fault characteristics. From the data that was collected from these faults we have begun to describe a series of structural and fluid flow events. This series allows us to say that small-scale faults and fractures are features by which fluids can migrate preferentially. In this series of events we isolate two separate phases of movement. The first phase of movement being has a component of shear in which the edges of the fractures are not moving directly apart. This event is accompanied by a fluid flow event the emplaced iron oxide in the fractures and the surrounding formation. The second event is a phase when the faults become reactivated by a stress that created open mode fractures. This second is accompanied by a fluid flow event that has high calcium content and emplaces calcite in the fractures. Throughout this study we give evidence to support this series of movement and fluid events.
73

TEMPORAL INFLUENCE OF NSAIDS ON MECHANICALLY INDUCED BONE FORMATION AND FLUID FLOW STIMULATED CELLULAR PGE2 PRODUCTION

Druchok, Cheryl January 2016 (has links)
Prostaglandins (PGs) are important signalling factors for bone mechanotransduction. The inhibition of cyclooxygenase, responsible for the synthesis of PGs, with non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to influence bone formation induced by mechanical stimulation. The purpose of this study was to examine the timing effects of NSAID administration on: 1) bone formation induced by multiple mechanical loading events in a rat model and 2) the PGE2 response of MLO-Y4 osteocyte like cells stimulated by fluid shear stress. The rat forelimb compression model was used to induce bone formation in male and female rats using a 1-month loading protocol (12 loading sessions). The right forelimbs were loaded and the left forelimbs served as non-loaded controls. NSAIDs were administered orally either before or after loading. Fluorochrome labels were administered to the rats to determine mineral apposition rate (MAR). The NSAIDs examined (indomethacin, NS-398 and ibuprofen) did not significantly affect periosteal MAR, administered either before or after loading, suggesting NSAIDs do not affect bone adaptation to multiple mechanical loading events. To examine in vitro effects of NSAIDs on PGE2 production, an orbital shaker was used to apply fluid shear stress to MLO-Y4 cells seeded in 6-well culture plates. Indomethacin was added to the culture media either before or after loading and media PGE2 concentrations were determined at various time points by enzyme immunoassay. Fluid shear stress increased PGE2 production of MLO-Y4 cells and indomethacin administration inhibited that response when administered both before and after fluid flow. However, PGE2 production was influenced by the media changes that occurred in the in vitro experiments, making it difficult to differentiate between indomethacin effects and media change effects. The in vitro experiments revealed the difficulties of modeling the timing effects of NSAID administration on MLO-Y4 PGE2 production in response to fluid flow. / Thesis / Doctor of Philosophy (PhD) / Bone is a dynamic tissue that can adapt to mechanical loading. Prostaglandins (PGs) are important signalling factors produced by osteocytes, the bone mechanosensing cells, that help to activate various cells and cell processes leading to changes in bone structure. Blocking PG signalling with non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to influence bone formation induced by mechanical stimulation in animals and humans. The purpose of this study was to examine the timing effects of NSAID administration on: 1) bone formation induced by multiple mechanical loading events in rats and 2) the PG production of osteocyte like cells in response to fluid flow stimulation. The results of this study suggest that NSAIDs, administered either before or after loading, do not affect bone responses to multiple mechanical loading events. Further investigation is needed to determine the translatability of these findings to NSAID use around the time of exercise in humans.
74

Study of Fluid Flow and Cavitation Inside Torque Converters

Chuang, Di 01 1900 (has links)
Cavitation inside an automotive torque converter running at various pump speeds was simulated by using the Computational Fluid Dynamics (CFD) commercial package ANSYS-CFX 10.0/11.0. The numerical solution obtained for the case with no cavitation was used as an initial condition for the case of flow with cavitation to accelerate convergence. The converter was initially modeled using several grid sizes to evaluate the effect of grid density on the numerical solution and to select the optimum grid size for subsequent simulations. Comparison of CFD to actual test results demonstrates that the cavitation model built in the commercial code, which was developed by Zwart et. al. (2004) based on the simplified Rayleigh-Plesset equation of bubble dynamics, does not capture the full effect of cavitation inside the converter. Modifications to this model have been investigated in this study. The effect of the variation of the automotive transmission oil vapor pressure due to the rise in temperature during normal operating conditions was also investigated and found not to cause any significant change to the area of vapor formation, and hence did not have a significant effect on the converter performance. Values of the empirical coefficients of the cavitation model had to be modified in order for the model to capture the full effect of cavitation on the performance of the converter operating at high pump speeds. Results showed a much larger area of vapor over the converter stator and traces of vapor appeared inside the pump, and turbine blades. With these modifications, the model produced results in better agreement with the available experimental data. Moreover, simulations have been carried out in both steady and transient states using various turbulence models available in CFX10.0/11.0 in order to evaluate the effect of the choice of turbulence models on cavitation prediction. / Thesis / Master of Applied Science (MASc)
75

Three-Dimensional Fluid Flow Measurement Techniques with Applications to Biological Flows

La Foy, Roderick Robert 16 September 2022 (has links)
The accuracy of plenoptic and tomographic particle image velocimetry (PIV) experimental methods is measured by simulating three-dimensional flows and measuring the errors in the estimated versus true velocity fields. Parametric studies investigate the accuracy of these methods by simulating a range of camera numbers, camera angles, calibration errors, and particle densities. The plenoptic simulations combine lightfield imaging techniques with standard tomographic techniques and are shown to produce higher fidelity measurements than either technique alone. The tomographic PIV simulations are centered around testing software developed for processing large quantities of data that were produced during an experimental investigation of the flow field about a 3D printed model of the flying snake Chrysopelea paradisi. A description of this tomographic PIV experiment is given along with basic results and recommendations for future investigation. / Doctor of Philosophy / Two different experimental measurement techniques that can be used to measure three-dimensional fluid flow fields are discussed. The first measurement technique that is investigated in simulations uses cameras with arrays of lenses to simultaneously capture images of a flow field from multiple different angles. A method of combining the data from multiple cameras is discussed and shown to yield more accurate estimates of the three-dimensional flow fields than from a single camera alone. An additional measurement technique that uses a group of standard cameras to measure three-dimensional flow fields is also discussed with respect to software that was developed for processing a large volume dataset. This software was developed for processing data collected during an experimental investigation of the flow field about a 3D printed model of the flying snake Chrysopelea paradisi. A description of this experiment is given along with basic results and recommendations for future investigation.
76

Linear instability for incompressible inviscid fluid flows : two classes of perturbations

Thoren, Elizabeth Erin 20 October 2009 (has links)
One approach to examining the stability of a fluid flow is to linearize the evolution equation at an equilibrium and determine (if possible) the stability of the resulting linear evolution equation. In this dissertation, the space of perturbations of the equilibrium flow is split into two classes and growth of the linear evolution operator on each class is analyzed. Our classification of perturbations is most naturally described in V.I. Arnold’s geometric view of fluid dynamics. The first class of perturbations we examine are those that preserve the topology of vortex lines and the second class is the factor space corresponding to the first class. In this dissertation we establish lower bounds for the essential spectral radius of the linear evolution operator restricted to each class of perturbations. / text
77

Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics

Pontaza, Juan Pablo 30 September 2004 (has links)
We consider the application of least-squares variational principles and the finite element method to the numerical solution of boundary value problems arising in the fields of solidand fluidmechanics.For manyof these problems least-squares principles offer many theoretical and computational advantages in the implementation of the corresponding finite element model that are not present in the traditional weak form Galerkin finite element model.Most notably, the use of least-squares principles leads to a variational unconstrained minimization problem where stability conditions such as inf-sup conditions (typically arising in mixed methods using weak form Galerkin finite element formulations) never arise. In addition, the least-squares based finite elementmodelalways yields a discrete system ofequations witha symmetric positive definite coeffcientmatrix.These attributes, amongst manyothers highlightedand detailed in this work, allow the developmentofrobust andeffcient finite elementmodels for problems of practical importance. The research documented herein encompasses least-squares based formulations for incompressible and compressible viscous fluid flow, the bending of thin and thick plates, and for the analysis of shear-deformable shell structures.
78

Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics

Pontaza, Juan Pablo 30 September 2004 (has links)
We consider the application of least-squares variational principles and the finite element method to the numerical solution of boundary value problems arising in the fields of solidand fluidmechanics.For manyof these problems least-squares principles offer many theoretical and computational advantages in the implementation of the corresponding finite element model that are not present in the traditional weak form Galerkin finite element model.Most notably, the use of least-squares principles leads to a variational unconstrained minimization problem where stability conditions such as inf-sup conditions (typically arising in mixed methods using weak form Galerkin finite element formulations) never arise. In addition, the least-squares based finite elementmodelalways yields a discrete system ofequations witha symmetric positive definite coeffcientmatrix.These attributes, amongst manyothers highlightedand detailed in this work, allow the developmentofrobust andeffcient finite elementmodels for problems of practical importance. The research documented herein encompasses least-squares based formulations for incompressible and compressible viscous fluid flow, the bending of thin and thick plates, and for the analysis of shear-deformable shell structures.
79

Global dynamics in a liquid crystal flow

Peacock, Thomas January 1997 (has links)
No description available.
80

An assessment of renormalization methods in the statistical theory of isotropic turbulence

Kiyani, Khurom January 2005 (has links)
For the latter half of the last century renormalization methods have played an important part in tackling problems in fundamental physics and in providing a deeper understanding of systems with many interacting scales or degrees of freedom with strong coupling. The study of turbulence is no exception, and this thesis presents an investigation of renormalization techniques available in the study of the statistical theory of homogeneous and isotropic turbulence. The thesis consists of two parts which assess the two main renormalization approaches available in modeling turbulence. In particular we will be focusing on the renormalization procedures developed by McComb and others. The first part of this thesis will discuss Renormalization Group (RG) approaches to turbulence, with a focus on applications to reduce the degrees of freedom in a large-eddy simulation. The RG methods as applied to classical dynamical systems will be reviewed in the context of the Navier-Stokes equations describing fluid flow. This will be followed by introducing a functional based formalism of a conditional average first introduced by McComb, Roberts and Watt [Phys. Rev A 45, 3507 (1992)] as a tool for averaging out degrees of freedom needed in an RG calculation. This conditional average is then used in a formal RG calculation applied to the Navier-Stokes equations, originally done by McComb and Watt [Phys. Rev. A 46, 4797 (1992)], and later revised by Mc- Comb and Johnston [Physica A 292, 346 (2001)]. A correction to the summing of the time-integral detailed in the latter work is shown to introduce an extra viscous life-time term to the denominator of the increment to the renormalized viscosity and is shown to have a negligible effect in the numerical calculations. We follow this study by outlining some problems with the previous approach. In particular it is shown that a cross-term representing the interaction between high and low wavenumber modes which was neglected in the previous studies on the grounds that it does not contribute to energy dissipation, does in fact contribute significantly. A heuristic method is then put forward to include the effects of this term in the RG calculation. This leads to results which agree qualitatively with numerical calculations of eddy-viscosities. We finish this part of the thesis with an application of the RG method to the modeling of a passive scalar advected by a turbulent velocity field. The second part of this thesis will begin by reviewing Eulerian renormalized perturbation theory attempts in closing the infinite moment hierarchy introduced by averaging the Navier-Stokes equations. This is followed by presenting a new formulation of the local energy transfer theory (LET) of McComb et. al. [J. Fluid Mech. 245, 279 (1992)] which resolves some problems of previous derivations. In particular we show by the introduction of time-ordering that some previous problems with the exponential representation of the correlator can be overcome. Furthermore, we show that the singularity in the LET propagator equation cancels by way of a counter-term. We end this study by introducing a single-time Markovian closure based on LET which, unlike other Markovian closures, does not rely on any arbitrary parameters being introduced in the theory.

Page generated in 0.164 seconds