• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lagrangian Mechanics Modeling of Free Surface-Affected Marine Craft

Battista, Thomas Andrew 26 April 2018 (has links)
Although ships have been used for thousands of years, modeling the dynamics of marine craft has historically been restricted by the complex nature of the hydrodynamics. The principal challenge is that the vehicle motion is coupled to the ambient fluid motion, effectively requiring one to solve an infinite dimensional set of equations to predict the hydrodynamic forces and moments acting on a marine vehicle. Additional challenges arise in parametric modeling, where one approximates the fluid behavior using reduced-order ordinary differential equations. Parametric models are typically required for model-based state estimation and feedback control design, while also supporting other applications including vehicle design and submarine operator training. In this dissertation, Lagrangian mechanics is used to derive nonlinear, parametric motion models for marine craft operating in the presence of a free surface. In Lagrangian mechanics, one constructs the equations of motion for a dynamic system using a system Lagrangian, a scalar energy-like function canonically defined as the system kinetic energy minus the system potential energies. The Lagrangian functions are identified under ideal flow assumptions and are used to derive two sets of equations. The first set of equations neglects hydrodynamic forces due to exogenous fluid motions and may be interpreted as a nonlinear calm water maneuvering model. The second set of equations incorporates effects due to exogenous fluid motion, and may be interpreted as a nonlinear, unified maneuvering and seakeeping model. Having identified the state- and time-dependent model parameters, one may use these models to rapidly simulate surface-affected marine craft maneuvers, enabling model-based control design and state estimation algorithms. / Ph. D.

Page generated in 0.0963 seconds