• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 150
  • 28
  • 15
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 411
  • 411
  • 141
  • 118
  • 90
  • 72
  • 56
  • 45
  • 41
  • 41
  • 38
  • 38
  • 37
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Avaliação das emissões de S'O IND.2' em leito fluidizado circulante na combustão de carvão mineral brasileiro e dolomita / Evaluation of S'O IND.2' emissions from brazilian mineral coal combustion with dolomite in circulating fluidized bed.

Hory, Rogerio Ishikawa 27 July 2007 (has links)
Orientador: Arai Augusta Bernardez Pecora / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-11T13:29:17Z (GMT). No. of bitstreams: 1 Hory_RogerioIshikawa_D.pdf: 3549862 bytes, checksum: 727c6ab5dce7454b6af9546842232b2e (MD5) Previous issue date: 2007 / Resumo: Este trabalho apresenta o estudo experimental do processo de combustão de carvão mineral brasileiro em reator de Leito Fluidizado Circulante (LFC) com o objetivo de avaliar as taxas de emissões de di óxido de enxofre (S02) e eficiência de conversão de carbono no processo de combustão. Para diminuir a emissão do S02 nos gases de exaustão, foi adicionado, ao carvão, quantidades de calcário dolomítico (dolomita), de modo que a relação molar entre o cálcio (Ca) presente no calcário e o enxofre (S) presente no carvão variou entre 0,0 e 2,0. A variação na relação molar Ca/S, como é denominada na literatura, foi um dos dois fatores avaliados neste trabalho. O outro fator envolvido nos testes foi o excesso de ar utilizado para combustão do carvão. Trabalhou-se com excesso de ar na faixa de 20 a 30%. Foram realizados 11 ensaios seguindo um planejamento experimental estatístico do tipo CCD (Composite Central Design) e mais 02 ensaios complementares. A relação molar Ca/S de 0,6 apresentou emissão zero de S02 e propôs-se utilizar uma nova relação molar: (Ca+Mg)/S para retratar processos de sorção com dolomitas. Para emissão zero de S02, uma relação molar (Ca+Mg)/S de 1,8 já é suficiente. Foram obtidas eficiências de conversão do carbono entre 86,0 e 93,0% para combustão do carvão / Abstract: This work presents an experimental study with Brazilian mineral coal combustion in a Circulating Fluidized Bed (CFB) reactor with the objective to evaluate the sulphur dioxide emissions (S02) and the carbon conversion efficiency in the combustion processo Dolomite was added to the coal to minimize the S02 emissions during combustion. The quantity of dolomite added was calculated based on the molar relation of calcium (Ca) present in the dolomite and sulphur (S) present in the coal. Ca/S molar relation had a variation between 0,0 and 2,0. Two factors were evaluated in this work: Ca/S relation and excess of air during combustion which had a variation between 20 and 30%. Eleven (11) experimental tests were evaluated following a statistical experimental design called CCD (Composite Central Design) and 02 (two) more complementary tests. Emissions of S02 with zero value were obtained for a Ca/S of 0,6. It was also proposed in this work a new relation for sorption of S02 with dolomite: (Ca+Mg)/S relation. Tests showed that a relation of 1.8 for (Ca+Mg)/S is sufficient for zero emissions of S02. Carbon conversion efficiency between 86.0 and 93.0 was also obtained during coal combustion / Doutorado / Termica e Fluidos / Mestre em Engenharia Mecânica
112

Steam Enhanced Calcination for CO2 Capture with CaO

Champagne, Scott January 2014 (has links)
Carbon capture and storage technologies are necessary to start lowering greenhouse gas emissions while continuing to utilize existing thermal power generation infrastructure. Calcium looping is a promising technology based on cyclic calcination/carbonation reactions which utilizes limestone as a sorbent. Steam is present in combustion flue gas and in the calciner used for sorbent regeneration. The effect of steam during calcination on sorbent performance has not been extensively studied in the literature. Here, experiments were conducted using a thermogravimetric analyzer (TGA) and subsequently a dual-fluidized bed pilot plant to determine the effect of steam injection during calcination on sorbent reactivity during carbonation. In a TGA, various levels of steam (0-40% vol.) were injected during sorbent regeneration throughout 15 calcination/carbonation cycles. All concentrations of steam were found to increase sorbent reactivity during carbonation. A level of 15% steam during calcination had the largest impact. Steam changes the morphology of the sorbent during calcination, likely by shifting the pore volume to larger pores, resulting in a structure which has an increased carrying capacity. This effect was then examined at the pilot scale to determine if the phase contacting patterns and solids heat-up rates in a fluidized bed were factors. Three levels of steam (0%, 15%, 65%) were injected during sorbent regeneration throughout 5 hours of steady state operation. Again, all levels of steam were found to increase sorbent reactivity and reduce the required sorbent make-up rate with the best performance seen at 65% steam.
113

Návrh a optimalizace fluidního roštu z hlediska funkčnosti a ekonomiky výroby / Fluid grate design and optimalization in the function aspect point of view and economy of production

Voráč, Petr January 2010 (has links)
The Master´s thesis deals with the fluid layer, with types of fluidized layer and with problems which can be solve during design of new fluidized beds. The aim was find the fluidized grid, which is the best form economical and technological point of view. In this work are compared three fluidized grids. The first was part of submission. Next two additional types were then proposed by the author of thesis. Proposals grids are discussed in detail from the design phase, through the modeling and subsequent simulation part in a computer program. The results of simulation are pressure losses. Which are compared with the recommended interval values. Afterward these tested beds are put through technical and economic analysis. The result is grade which is met both requirements.
114

Self-optimizing control of oxy-combustion in circulating fluidized bed boilers

Niva, L. (Laura) 27 November 2018 (has links)
Abstract Energy production in combustion power plants is a significant source of anthropogenic carbon dioxide emissions. The targets of international climate agreements call for utilizing all available technologies to achieve rapid and cost-effective emission reductions. Carbon capture and storage is one of the possible technical solutions applied in combustion power plants. Circulating fluidized bed boilers have gained increasing popularity due to advantages in availability, emission control, fuel flexibility and option for using challenging fuels, and the possibility of using high-efficiency steam cycles. In the novel process of oxy-combustion, combustion air is replaced by a mixture of oxygen and recycled flue gas to facilitate the capture of carbon dioxide from the flue gas flow. Additional degrees of freedom become available for combustion control as the gas flow and composition can be controlled separately for fluidization and combustion purposes. In the research for this thesis, self-optimizing control was applied for the control structure design of a circulating fluidized bed boiler. Self-optimizing control offers a systematic tool for the early phases of control design, in which decisions have traditionally been made based on intuition, heuristics and previous experience. The self-optimizing control approach searches for controlled variables without a need for constant setpoint optimization when the process is affected by disturbances and implementation errors. Results presented in the thesis show that self-optimizing control can be applied in the control structure design of circulating fluidized bed combustion. A range of control structure alternatives were evaluated using steady-state approximations of a validated process model. For the novel oxy-combustion process, promising control structures were identified and could be dynamically demonstrated. / Tiivistelmä Energiantuotanto polttovoimalaitoksissa on merkittävä hiilidioksidipäästöjen lähde. Kansainväliset ilmastotavoitteet edellyttävät kaikkien käytettävissä olevien teknologioiden hyödyntämistä päästövähennysten aikaansaamiseksi nopeasti ja kustannustehokkaasti. Hiilidioksidin talteenotto on yksi mahdollisista teknisistä ratkaisuista polttovoimalaitoksissa. Kiertoleijukattilat ovat saavuttaneet kasvavaa suosiota etuinaan hyvä käytettävyys, tehokas päästöjen hallinta, soveltuvuus erilaisten haastavienkin polttoaineiden hyödyntämiseen ja mahdollisuus tehokkaiden höyrykiertojen käyttöön. Uudessa happipolttoprosessissa palamisilma korvataan hapen ja kierrätetyn savukaasun seoksella, mikä mahdollistaa hiilidioksidin talteenoton savukaasuista. Kiertoleijupolton säädön kannalta vapausasteet lisääntyvät, sillä leijutukseen ja polttamiseen käytettävän kaasun määrää ja koostumusta voidaan säätää erikseen. Väitöstutkimuksessa käytettiin itseoptimoivaa säätöä kiertoleijukattilan säätörakenteiden suunnitteluun. Itseoptimoiva säätö tarjoaa systemaattisen menetelmän säätösuunnittelun alkuvaiheeseen, jossa päätöksenteko on perinteisesti tehty esimerkiksi intuition, heuristiikan ja aiempien ratkaisujen perusteella. Menetelmän tavoitteena on löytää säädettävät muuttujat, joiden asetusarvot eivät vaadi jatkuvaa optimointia, vaikka prosessiin vaikuttavat erilaiset häiriöt ja mittausvirheet. Väitöstutkimuksen tulokset osoittavat, että itseoptimoiva säätö soveltuu kiertoleijupolton säätörakenteiden suunnitteluun. Erilaisten säätörakenteiden toimivuutta arvioitiin käyttäen validoidun prosessimallin tasapainotilan approksimaatioita. Uudelle happipolttoprosessille löydettiin lupaavia säätörakenteita, joiden toimintaa voitiin demonstroida myös dynaamisesti.
115

Gazéification de la biomasse en lit fluidisé dense et circulant entre 750 et 850°C : étude hydrodynamique et réactive / Biomass gasification in a dense and circulating fluidized bed between 750 and 850°C : hydrodynamic and reactive study

Pécate, Sébastien 12 October 2017 (has links)
La conversion thermochimique de la biomasse en lit fluidisé circulant permet la production d’un gaz à haute valeur ajoutée, utilisable dans de nombreuses applications. L’objectif de ces travaux est de mieux comprendre et modéliser les phénomènes couplés, hydrodynamiques et réactifs, se déroulant en lit fluidisé circulant. Dans un premier temps, un pilote de pyrogazéification de 20 kg/h de biomasse en lit fluidisé circulant a été conçu. L’étude hydrodynamique de ce pilote a ensuite été réalisée entre 20 et 950 °C. Les résultats ont permis d’établir des règles de design et de fonctionnement de réacteurs de gazéification en lit fluidisé circulant. Dans un second temps, une étude de la pyrogazéification de la biomasse a été réalisée en lit fluidisé dense ainsi qu’en lit fluidisé circulant, entre 750 et 850 °C. L’étude de l’influence de nombreux paramètres opératoires (températures, pression partielle de la vapeur d’eau, débit de biomasse, débit de circulation, inventaire et nature du média, forme de la biomasse) sur les performances de la gazéification a permis d’identifier les paramètres clés permettant de contrôler la composition ainsi que le volume de gaz de synthèse produit. Par ailleurs, à partir des résultats expérimentaux, un schéma réactionnel est proposé pour la pyrolyse de la biomasse étudiée. Enfin, un outil de modélisation du réacteur de gazéification de la biomasse en lit fluidisé dense et circulant, intégrant les réactions de pyrolyse, de gazéification, de water-gas shift et de reformage des goudrons a été développé et validé sur les résultats expérimentaux. / The biomass thermochemical conversion in fast internally circulating fluidized bed (FICFB) allows producing a high-added value syngas that can be used in many end-use applications. This work aims to better understand and model the coupled phenomena, hydrodynamic and reactive, occurring in FICFB processes. In a first time, a 20 kg/h FICFB biomass pyrogasification pilot was designed and erected. Then, the hydrodynamic study of this pilot was carried out between 20 and 950 °C. Results led to propose some design and operation rules for FICFB gasifiers. In a second time, biomass pyrogasification was studied in a dense fluidized bed (DFB) as in a FICFB, between 750 and 850 °C. From the survey of the effect of numerous operating parameters (temperatures, steam partial pressure, biomass feeding rate, circulation flow rate, bed material inventory and nature, biomass shape) on the gasification performances, the key parameters for the control of produced syngas volume and composition were identified. Finally, a modelling tool of DFB and FICFB biomass gasifiers, integrating pyrolysis, gasification, water-gas shift and tars reforming reactions was developed and validated on the experimental results.
116

Dry beneficiation of fine coal using a fluidized dense medium bed / Andre Nardus Terblanche

Terblanche, Andre Nardus January 2013 (has links)
Beneficiation of fine coal (+500 μm –2000 μm) is a worldwide problem in the mining industry, especially dry beneficiation of fine coal. Coal beneficiation can be divided primarily into two methods, namely wet- and dry beneficiation. Wet beneficiation methods are utilized more in today‘s industry because of the sharp separation efficiency that can be achieved. These processes include wet jigging, dense medium cyclones, spiral beneficiation etc. Due to the lack of a sufficient water supply in some regions around the world including South Africa, dry beneficiation methods are becoming more popular. Recent mechanized mining methods caused the fraction of fines from coal mines to increase over the years. However, due to old inefficient technologies, coal fines contained in slurry ponds could not be beneficiated and had to be discarded. One new dry beneficiation technology that has been used and researched extensively is the fluidized dense medium bed (FDMB) technology. The purpose of this study is to determine whether fine coal can be successfully beneficiated with a FDMB. It also has to be determined whether adding magnetite and introducing a jigging (pulse) motion to the air feed will increase the separation efficiency of the fluidization process. Witbank seam 4 and a Waterberg coal was used in experiments during this study. A coarse (+1180 μm –2000 μm), fine (+500 μm –1180 μm) and a mix of the two samples were prepared and tested. It was found that adding magnetite to the feed of the fluidized bed did not increase the separation efficiency. However, previous studies indicated the opposite results with regards to magnetite addition. The difference in results obtained could be prescribed to the ultrafine nature of the magnetite and the small coal particles size range used. If the presence of fine particles in the bed increases, the stability of fluidization decreases. In turn, the separation efficiency of the process decreases. Subjecting the feed air flow to a pulsating motion did not have a significant effect on separation. Good results were still obtained with jigging experiments, although not better than with normal fluidization. Stratification of coal particles according to quality was evident by the results obtained during experiments. The quality of coal increases from the bottom to the top of the bed. Overall the fluidized bed, in the absence of magnetite, was found to be a sufficient de-ashing process and further research on this technology could be very beneficial to the coal industry. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
117

Dry beneficiation of fine coal using a fluidized dense medium bed / Andre Nardus Terblanche

Terblanche, Andre Nardus January 2013 (has links)
Beneficiation of fine coal (+500 μm –2000 μm) is a worldwide problem in the mining industry, especially dry beneficiation of fine coal. Coal beneficiation can be divided primarily into two methods, namely wet- and dry beneficiation. Wet beneficiation methods are utilized more in today‘s industry because of the sharp separation efficiency that can be achieved. These processes include wet jigging, dense medium cyclones, spiral beneficiation etc. Due to the lack of a sufficient water supply in some regions around the world including South Africa, dry beneficiation methods are becoming more popular. Recent mechanized mining methods caused the fraction of fines from coal mines to increase over the years. However, due to old inefficient technologies, coal fines contained in slurry ponds could not be beneficiated and had to be discarded. One new dry beneficiation technology that has been used and researched extensively is the fluidized dense medium bed (FDMB) technology. The purpose of this study is to determine whether fine coal can be successfully beneficiated with a FDMB. It also has to be determined whether adding magnetite and introducing a jigging (pulse) motion to the air feed will increase the separation efficiency of the fluidization process. Witbank seam 4 and a Waterberg coal was used in experiments during this study. A coarse (+1180 μm –2000 μm), fine (+500 μm –1180 μm) and a mix of the two samples were prepared and tested. It was found that adding magnetite to the feed of the fluidized bed did not increase the separation efficiency. However, previous studies indicated the opposite results with regards to magnetite addition. The difference in results obtained could be prescribed to the ultrafine nature of the magnetite and the small coal particles size range used. If the presence of fine particles in the bed increases, the stability of fluidization decreases. In turn, the separation efficiency of the process decreases. Subjecting the feed air flow to a pulsating motion did not have a significant effect on separation. Good results were still obtained with jigging experiments, although not better than with normal fluidization. Stratification of coal particles according to quality was evident by the results obtained during experiments. The quality of coal increases from the bottom to the top of the bed. Overall the fluidized bed, in the absence of magnetite, was found to be a sufficient de-ashing process and further research on this technology could be very beneficial to the coal industry. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
118

Computational Scheme Guided Design of a Hybrid Mild Gasifier

Lu, You 02 August 2012 (has links)
A mild gasification method has been developed to provide an innovative clean coal technology. The objectives of this study are to (a) incorporate a fixed rate devolatilization model into the existing 2D multiphase reaction model, (b) expand the 2D model to 3D and (c) utilize the improved model to investigate the mild-gasification process and guide modification of the mild-gasifier design. The Eulerain-Eulerian method is employed to calculate both the primary phase (air) and secondary phase (coal particles). The improved 3D simulation model, incorporated with a devolatilization model, has been successfully developed and employed to determine the appropriate draft tube dimensions, entrained flow residence time, The simulations also help determine the appropriate operating fluidization velocity range to sustain the fluidized bed depth without depleting the chars or blowing the char away. The results are informative, but require future experimental data for verification.
119

Estudo experimental e simulação da fluidodinâmica de amido de milho em leito fluidizado pulsado / Experimental and simulation of corn starch in a fluidized pulsed bed fluid

Pavani, Marília Gusman Thomazi 19 August 2016 (has links)
A fluidização é uma operação unitária presente nas indústrias química, farmacêutica e alimentícia. Durante a fluidização, o leito de partículas sólidas é suspenso por um fluxo ascendente de gás. A velocidade mínima de fluidização indica a menor velocidade do gás em que as partículas iniciam a agitação, enquanto a velocidade terminal é caracterizada pela elutriação, ou arraste de partículas juntamente com o gás. Portanto, um leito fluidizado deve operar em uma velocidade de gás que esteja entre a velocidade mínima de fluidização e a velocidade terminal de arraste. No entanto, os sólidos particulados coesivos, caracterizadas pelo grupo de Geldart C, são difíceis de serem fluidizados, devido à formação de canais preferenciais, e são facilmente elutriados. Neste trabalho estudou-se a fluidização de partículas de amido de milho pela passagem de ar a 27 °C. O amido de milho obteve diâmetro médio mássico e densidade do sólido iguais a 30,3 µm e 1446,7 kg/m3, e pôde ser caracterizado como um sólido particulado coesivo, em que a velocidade efetiva de fluidização e velocidade terminal foram iguais a (0,66 e 0,68) m/s, respectivamente. A qualidade da fluidização foi aprimorada pelo uso da pulsação do gás, que possibilitou reduzir a velocidade mínima de fluidização e ampliar a faixa de velocidade de fluidização, de forma a minimizar o arraste de sólidos por elutriação. As frequências de pulsação estudadas foram (0, 5, 10 e 15) Hz. Em uma primeira etapa, foram obtidos os perfis de velocidade queda de pressão a partir de ensaios experimentais. Posteriormente, os perfis experimentais foram utilizados para validação dos modelos de escoamento bifásico Euler-Euler, em simulações realizadas pelo software COMSOL. Dentre os principais resultados, destaca-se que os modelos numéricos puderem descrever com boa aproximação os perfis fluidodinâmicos do sistema binário amido e ar. A aproximação numérica somente foi obtida ao estabelecer um diâmetro equivalente com tamanho de 100 µm, que foi superior ao diâmetro médio mássico. Este resultado evidenciou que a fluidização ocorreu na forma de agregados de partículas, que é característico de sistemas coesivos. O uso da pulsação do ar também resultou ruptura de canais preferenciais, e permitiu o início da fluidização em menores velocidades do ar. / Fluidization is a unit operation in the chemical, pharmaceutical and food industries. During the fluidization, the solid particles is suspended by a stream air flow. The minimum fluidization velocity indicates the lowest gas velocity in which the particles begin agitation while the terminal velocity is characterized by elutriation, or drag the particles along with gas. Therefore, a fluidized bed must be operated at a gas velocity which is between the minimum fluidization velocity and the terminal velocity. However, cohesive solid particles, characterized by Geldart Group C, are difficult to be fluidized due to the formation of cracks and channeling and areeasily elutriated from chamber. In this work, the fluidization of cornstarch particles occurred by anair flow at 27 °C. Cornstarch showed a mean diameter and solid density equal to 30.3 µm and 1446.7 kg/m3 and could be characterized as a cohesive particulate solid. The effective fluidization velocity and the terminal velocity were equal to (0.66 and 0.68) m/s respectively. The fluidization quality was improved by the use of pulsation air flow. The minimum fluidization velocity was reduced, increasing the fluidization velocity operational range. The air pulsation frequency were studied at (0, 5, 10 and 15) Hz. In a first step, the experimental tests obtained the fluidynamics profiles of pressure drop versus air velocity. Subsequently, the experimental profiles were used to validate the Euler-Euler model in simulations by COMSOL software. The main results emphasized that the numerical models described the fluid dynamic profiles with good approximation. The numerical approach established an equivalent diameter of 100 µm, which was greater than the mass median diameter. This result showed that the fluidization occurred in the form of aggregates of particles, which is a characteristic of cohesive systems. The use of air pulsation also resulted in the rupture of channeling and allowed the fluidization at lower air velocities.
120

Um estudo da combustão de carvão mineral CE4500 em reator de leito fluidizado borbulhante / A study of CE4500 mineral coal combustion in a bubbling fluidized bed reator

Lindo Samaniego, Julio Edgardo 03 August 2011 (has links)
O carvão mineral apresenta-se como uma importante alternativa para geração termoelétrica no Brasil. Os carvões brasileiros, porém, são caracterizados por elevados teores de enxofre, e na sua combustão libera-se consideráveis de quantidades dióxido de enxofre. O processo de combustão em leito fluidizado apresenta-se particularmente adequado para a queima destes carvões, notadamente devido à possibilidade da utilização de absorventes calcários para remoção in loco do dióxido de enxofre produzido na combustão. Neste trabalho estudou-se a combustão em leito fluidizado atmosférico borbulhante de um carvão mineral beneficiado para uso termoelétrico denominado CE4500, procedente de Criciúma-SC. Para absorção de enxofre utilizou-se um calcário dolomítico procedente de Ipeúna-SP. Utilizou-se a planta piloto para combustão em leito fluidizado do Laboratório de Engenharia Térmica e Fluidos da EESC-USP, com câmara de combustão de 0,5 x 0,5 m de seção transversal e 3 m de altura. Ensaios foram realizados para diferentes velocidades de fluidização e relações (Ca+Mg)/S de alimentação. Concentrações de gases foram medidas ao longo da altura e da seção transversal do reator, permitindo verificar a homogeneidade do processo, além do efeito dos pontos de alimentação de carvão e calcário sobre esta homogeneidade. Determinou-se conversões e coeficientes globais de taxa de reação para a combustão do carvão e para a sulfatação do calcário. Avalia-se que os resultados obtidos representam uma significativa contribuição para auxílio ao projeto de reatores, e para a validação de modelos matemáticos de simulação. / Mineral coal stands as an important alternative for thermoelectric power generation in Brazil. Brazilian coals, however, are characterized by high sulfur contents, and significant amounts of sulfur dioxide are produced in its combustion. The fluidized bed combustion process is particularly suitable for burning those coals, notably due to the possibility of using limestone absorbents to in loco remove the sulfur dioxide produced in the combustion. In this work the atmospheric bubbling fluidized bed combustion of a mineral coal was studied, which is a benefited coal for thermoelectric use named CE4500, from Criciúma-SC. A dolomitic limestone from Ipeúna-SP was used for sulfur absorption. The pilot scale fludized bed combustion plant of the Laboratory of Thermal and Fluids Engineering of EESC-USP was used, which has a combustion chamber of 0.5 x 0.5 m of cross section and is 3 m high. Tests were performed for different fluidization velocities and (Ca+Mg)/S feed ratios. Gas concentrations were measured along the height and the cross section of the reactor, allowing to verify the process homogeneity, besides the effect of the coal and limestone feeding points over this homogeneity. Conversions and global reaction rates were determined for both coal combustion and absorption by limestone. It is evaluated that the results that were obtained represent a significant contribution regarding reactor design as well as modeling validation.

Page generated in 0.0342 seconds