Spelling suggestions: "subject:"fluorescent inn site hybridization"" "subject:"fluorescent iin site hybridization""
31 |
Analýza pohlavných chromozómov a repetitívne usporiadaných génov u vybraných vtáčkarovitých a araneomorfných pavúkov / Analysis of sex chromosomes and gene clusters in selected mygalomorph and araneomorph spidersPappová, Michaela January 2019 (has links)
1 Abstract: The diploma thesis focuses on study of sex chromosomes evolution and repetitive organized genes of chosen mygalomorph and araneomorph spiders. Spiders are characterized by complexicity of sex chromosome systems, their karyotypes contain multiple sex chromosomes X. Besides multiple X chromosomes they also contain a pair or two pairs of nondiferentiated sex chromosomes X and Y. The used methods include methods of classical cytogenetics (preparation of chromosome slides, C-banding) and methods of molecular cytogenetics (fluorescent in situ hybridization and comparative genome hybridization). Complex sex systems were discovered in the studied Theraphosidae spiders. In Theraphosidae spiders Atropothele socotrana and Poecilotheria vittata neo-sex chromosomes were found. Analysis of molecular differentiation of sex chromosomes suggests low differentiation of Y chromosome in neo-sex chromosomes and pair of nondifferentiated sex chromosomes XY. In haplogyne spider Kukulcania aff. hibernalis (X1X2Y), the Y chromosome was significantly differentiated, male specific signal covered the whole chromosome. Detection of 18S rDNA showed that karyotypes of majority of analysed Theraphosidae spiders and haplogyne spiders contain low number (1 or 2) of nucleolar organizing regions localized terminally, which...
|
32 |
Analýza karyotypu u mesothelidních pavouků / Karyotype analysis of mesothelid spidersProkopcová, Lenka January 2018 (has links)
Cytogenetics of mesothelid spiders is largely unkown. The presented diploma thesis is focused on the karyotype evolution of these spiders. As it is the most basal group of spiders, the analysis of its cytogenetics can bring important data about ancestral spider karyotype. In the framework of my thesis, I analysed diploid chromosome numbers, chromosome morphology, meiotic division, sex chromosomes and the pattern of selected molecular markers that were detected by fluorescence in situ hybridization. According to my results, mesothelid spiders have a high number of chromosomes and the prevalence of monoarmed chromosomes. Unlike other spiders, mesothelids have little differentiated sex chromosomes. Key words: evolution, spider, chromosome, karyotype, fluorescence in situ hybridization, nucleolar organiser region, sex chromosomes
|
33 |
Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybrids / Molekular-cytogenetische Analyse der repetitiven Sequenzen in Genomen von Beta Arten und HybridenDechyeva, Daryna 19 July 2006 (has links) (PDF)
The elucidation of the composition and organization of genomes of higher plants is a fundamental problem of modern molecular biology. The genus Beta containing 14 species assigned to the sections Beta, Corollinae, Nanae and Procumbentes provides a suitable system for the comparative study of the nuclear genomes. Sugar beet Beta vulgaris has a genome size of 758 Mbp DNA with estimated 63 % repetitive sequences and the number of chromosomes n=9. The wild beet Beta procumbens is an important natural pool of resistance against pests and tolerance to unfavorable growth conditions. The subject of this research was the isolation and description of new repetitive DNA families from genomes of this Beta species. This work presents the molecular investigation and cytogenetic characterization by high-resolution multicolor fluorescent in situ hybridization (FISH) of the satellite and dispersed repetitive sequences in wild and cultivated beet species and in their hybrids. New repetitive sequences were isolated from the B. procumbens genome. The AluI restriction satellite repeats pAp11 are 229-246 bp long and form subfamilies. The satellite is amplified in the section Procumbentes, but also found in distantly related section Beta. Thus, pAp11 is probably an ancient component of Beta genomes. It could be the ancestor of the satellite subfamily pEV4 in B. vulgaris based on sequence analysis, Southern hybridization and comparative FISH. pAp11 was found at centromeric and a few intercalary sites in B. procumbens and formed intercalary blocks on B. vulgaris chromosomes where it co-localized with pEV4. These remarkable differences in the chromosomal position of pAp11 between Procumbentes and Beta species indicate that both satellites were likely involved in the expansion or rearrangement of the intercalary heterochromatin of B. vulgaris. Other two sequence families characterized on molecular, genomic and chromosomal levels are the non-homologous repeats pAp4 and pAp22, 1354 and 582 bp long. They have a dispersed organization in the genome and are widely scattered along B. procumbens chromosomes. pAp4 and pAp22 are specific for the section Procumbentes and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. High-resolution FISH on meiotic chromosomes showed that the both sequences mostly co-localize. The PCR analysis of their flanking regions revealed that pAp22 is a part of a Long Terminal Repeat (LTR) of an Athila-like env-class retrotransposon. This is the first indication that the retrovirus-like DNA elements exist in Beta. An ancient family of subtelomeric satellite DNA pAv34 was isolated from all four sections of the genus Beta and from spinach, a related Chenopodiaceae. Five clones were analyzed from each of the five species. The genomic organization and species distribution of the satellites were studied by sequencing and Southern hybridization. The repeating units in all families are 344-362 bp long and share 46.2-98.8 % similarity. Each monomer consists of two subunits SU1 and SU2 of 165-184 bp. The maximum likelihood and neighbor joining analyses of the 25 subtelomeric satellite monomers and their subunits indicated, that the duplication leading to the emergence of the 360 bp satellite should have occurred early in the phylogeny. The two directions of diversification are the clustering of satellites in two groups of subunits SU1 and SU2 and the arrangement of satellite repeats in section-specific groups. The comparative chromosomal localization of the telomeric repeat, pAv34 and rDNA was investigated by multicolor FISH. B. vulgaris chromosome termini showed unique physical organization of telomeric repeat and the subtelomeric satellite, as studied by high-resolution FISH on extended DNA fibers. The estimated length of the telomeric array was 0.55 - 62.65 kb, the length of pAv34 was 5.0-125.25 kb, the spacer between these sequences spanned 1.0-16.60 kb. Eight various classes of repeats were used to characterize the minichromosomes of the sugar beet fragment addition lines PRO1 and PAT2 by comparative multi-color FISH. The study allowed to propose a schematic pattern of repetitive DNA organization on the PRO1 and PAT2 minichromosomes. PRO1 has an acrocentric minichromosome, while PAT2 possesses a metacentric or submetacentric chromosome fragment. The functional integrity of the fragment addition line centromeres was confirmed by an immunostaining localization of the proteins specific to the active kinetochore. The serine 10-phosphorylated histone H3 was detected in pericentromeric regions of the PRO1 chromosomes. The microtubuli attachment sites were visualized as parts of kinetochore complexes.
|
34 |
Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybridsDechyeva, Daryna 07 July 2006 (has links)
The elucidation of the composition and organization of genomes of higher plants is a fundamental problem of modern molecular biology. The genus Beta containing 14 species assigned to the sections Beta, Corollinae, Nanae and Procumbentes provides a suitable system for the comparative study of the nuclear genomes. Sugar beet Beta vulgaris has a genome size of 758 Mbp DNA with estimated 63 % repetitive sequences and the number of chromosomes n=9. The wild beet Beta procumbens is an important natural pool of resistance against pests and tolerance to unfavorable growth conditions. The subject of this research was the isolation and description of new repetitive DNA families from genomes of this Beta species. This work presents the molecular investigation and cytogenetic characterization by high-resolution multicolor fluorescent in situ hybridization (FISH) of the satellite and dispersed repetitive sequences in wild and cultivated beet species and in their hybrids. New repetitive sequences were isolated from the B. procumbens genome. The AluI restriction satellite repeats pAp11 are 229-246 bp long and form subfamilies. The satellite is amplified in the section Procumbentes, but also found in distantly related section Beta. Thus, pAp11 is probably an ancient component of Beta genomes. It could be the ancestor of the satellite subfamily pEV4 in B. vulgaris based on sequence analysis, Southern hybridization and comparative FISH. pAp11 was found at centromeric and a few intercalary sites in B. procumbens and formed intercalary blocks on B. vulgaris chromosomes where it co-localized with pEV4. These remarkable differences in the chromosomal position of pAp11 between Procumbentes and Beta species indicate that both satellites were likely involved in the expansion or rearrangement of the intercalary heterochromatin of B. vulgaris. Other two sequence families characterized on molecular, genomic and chromosomal levels are the non-homologous repeats pAp4 and pAp22, 1354 and 582 bp long. They have a dispersed organization in the genome and are widely scattered along B. procumbens chromosomes. pAp4 and pAp22 are specific for the section Procumbentes and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. High-resolution FISH on meiotic chromosomes showed that the both sequences mostly co-localize. The PCR analysis of their flanking regions revealed that pAp22 is a part of a Long Terminal Repeat (LTR) of an Athila-like env-class retrotransposon. This is the first indication that the retrovirus-like DNA elements exist in Beta. An ancient family of subtelomeric satellite DNA pAv34 was isolated from all four sections of the genus Beta and from spinach, a related Chenopodiaceae. Five clones were analyzed from each of the five species. The genomic organization and species distribution of the satellites were studied by sequencing and Southern hybridization. The repeating units in all families are 344-362 bp long and share 46.2-98.8 % similarity. Each monomer consists of two subunits SU1 and SU2 of 165-184 bp. The maximum likelihood and neighbor joining analyses of the 25 subtelomeric satellite monomers and their subunits indicated, that the duplication leading to the emergence of the 360 bp satellite should have occurred early in the phylogeny. The two directions of diversification are the clustering of satellites in two groups of subunits SU1 and SU2 and the arrangement of satellite repeats in section-specific groups. The comparative chromosomal localization of the telomeric repeat, pAv34 and rDNA was investigated by multicolor FISH. B. vulgaris chromosome termini showed unique physical organization of telomeric repeat and the subtelomeric satellite, as studied by high-resolution FISH on extended DNA fibers. The estimated length of the telomeric array was 0.55 - 62.65 kb, the length of pAv34 was 5.0-125.25 kb, the spacer between these sequences spanned 1.0-16.60 kb. Eight various classes of repeats were used to characterize the minichromosomes of the sugar beet fragment addition lines PRO1 and PAT2 by comparative multi-color FISH. The study allowed to propose a schematic pattern of repetitive DNA organization on the PRO1 and PAT2 minichromosomes. PRO1 has an acrocentric minichromosome, while PAT2 possesses a metacentric or submetacentric chromosome fragment. The functional integrity of the fragment addition line centromeres was confirmed by an immunostaining localization of the proteins specific to the active kinetochore. The serine 10-phosphorylated histone H3 was detected in pericentromeric regions of the PRO1 chromosomes. The microtubuli attachment sites were visualized as parts of kinetochore complexes.
|
Page generated in 0.1147 seconds