• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ENGINEERING FLUORESCENT PROTEIN BIOSENSORS FOR INTERROGATING BIOLOGICALLY RELEVANT CHEMICAL SPECIES

Keelan J Trull (6900062) 16 August 2019 (has links)
<div> <p>Fluorescent proteins and the biosensors created with them have been used extensively to monitor chemical species inside and outside of the cell. They have been used to increase our knowledge of cellular function in normal and diseased states. Fluorescent biosensors are advantageous because they can be genetically encoded, do not require exogenous reagents, and can be quantitative. Fluorescent biosensors are also able to measure analytes with high spatial and temporal resolutions, enabling measurements at the scale of physiological events. In this thesis efforts have made to increase the available fluorescent biosensor tools for imaging cellular events. This work includes creation of new sensors for two molecules not yet detectable via fluorescent protein biosensor, acetylcholine and adenosine diphosphate. Efforts were also made to improve the current available biosensors for adenosine triphosphate and cellular redox, to make them more compatible with multiplex and deep tissue imaging. Here I present my work to design, characterize and utilize these fluorescent biosensors.</p> </div> <br>
2

Single Cell Imaging of Metabolism with Fluorescent Biosensors

Hung, Yin Pun 21 June 2013 (has links)
Cells utilize various signal transduction networks to regulate metabolism. Nevertheless, a quantitative understanding of the relationship between growth factor signaling and metabolic state at the single cell level has been lacking. The signal transduction and metabolic states could vary widely among individual cells. However, such cell-to-cell variation might be masked by the bulk measurements obtained from conventional biochemical methods. To assess the spatiotemporal dynamics of metabolism in individual intact cells, we developed genetically encoded biosensors based on fluorescent proteins. As a key redox cofactor in metabolism, NADH has been implicated in the Warburg effect, the abnormal metabolism of glucose that is a hallmark of cancer cells. To date, however, sensitive and specific detection of NADH in the cytosol of individual live cells has been difficult. We engineered a fluorescent biosensor of NADH by combining a circularly permuted green fluorescent protein variant with a bacterial NADH-binding protein Rex. The optimized biosensor Peredox reports cytosolic \(NADH:NAD^+\) ratios in individual live cells and can be calibrated with exogenous lactate and pyruvate. Notably pH resistant, this biosensor can be used in several cultured and primary cell types and in a high-content imaging format. We then examined the single cell dynamics of glycolysis and energy-sensing signaling pathways using Peredox and other fluorescent biosensors: AMPKAR, a sensor of the AMPK activity; and FOXO3-FP, a fluorescently-tagged protein domain from Forkhead transcription factor FOXO3 to report on the PI3K/Akt pathway activity. With perturbation to growth factor signaling, we observed a transient response in the cytosolic \(NADH:NAD^+\) redox state. In contrast, with partial inhibition of glycolysis by iodoacetate, individual cells varied substantially in their responses, and cytosolic \(NADH:NAD^+\) ratios oscillated between high and low states with a regular, approximately half-hour period, persisting for hours. These glycolytic NADH oscillations appeared to be cell-autonomous and coincided with the activation of the PI3K/Akt pathway but not the AMPK pathway. These results suggest a dynamic coupling between growth factor signaling and metabolic parameters. Overall, this thesis presents novel optical tools to assess metabolic dynamics – and to unravel the elaborate and complex integration of glucose metabolism and signaling pathways at the single cell level.
3

A facile screening strategy to construct auto-fluorescent protein-based biosensors / 蛍光タンパク質を利用したバイオセンサーの効率的な構築法に関する研究

Tajima, Shunsuke 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23998号 / エネ博第434号 / 新制||エネ||82(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 森井 孝, 教授 片平 正人, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
4

Développement de biosenseurs fluorescents et d’inhibiteurs pour suivre et cibler CDK5/p25 dans le glioblastome / Development of fluorescent biosensors and inhibitors to probe and target CDK5/p25 in glioblastoma

Peyressatre, Marion 21 October 2016 (has links)
CDK5 est une protéine kinase exprimée de façon ubiquitaire et activée principalement dans le système nerveux central, ou elle joue un rôle important dans la transmission synaptique, la guidance axonale et la migration cellulaire, la plasticité synaptique et le développement neuronal. CDK5 est associée à la protéine p35 au niveau de la membrane cellulaire, et activée par clivage calpaine-dépendant de cette dernière en p25, ce qui conduit à la relocalisation de CDK5/p25 dans le cytoplasme cellulaire. CDK5/p25 phosphoryle de nombreux substrats dont la protéine Tau, contribuant ainsi à l’apparition de plaques neurofibrillaires responsable des pathologies neurodégénératives comme Alzheimer et Parkinson, lorsqu’elle est hyperactivée. Plus récemment, l’expression et l’hyperactivation de CDK5 a été décrite comme impliquée dans le développement de cancers et en particulier de tumeurs cérébrales. Toutefois aucune approche ne permet actuellement de détecter et de mesurer l’activité de CDK5/p25 directement dans des cellules vivantes, au sein des tissus et des tumeurs concernées, dû à un manque d’outils fiables et sensibles pour quantifier les changements dynamiques de son activité kinase. Par ailleurs, peu d’inhibiteurs sont actuellement disponibles pour inhiber CDK5/p25, de manière spécifique, la plupart ciblant la poche de fixation de l’ATP.Le premier objectif de ma thèse a consisté à développer un biosenseur d’activité fluorescent de nature peptidique appelé CDKACT5 qui rapporte l’activité kinase de CDK5/p25 recombinante et dans des extraits cellulaires de manière dynamique et réversible suivant stimulation ou inhibition de cette kinase. Une fois caractérisé et validé in vitro, le biosenseur a été appliqué à la détection d’altérations de CDK5/p25 dans différentes lignées cellulaires de glioblastome dans des essais fluorescents d’activité kinase. Enfin CDKACT5 a été introduit dans des cellules neuronales vivantes afin de suivre les changements dynamiques d’activité de CDK5/p25 par microscopie de fluorescence et vidéo microscopie.Le deuxième objectif de ma thèse a consisté à développer un biosenseur fluorescent conformationnel dans le but d’identifier des inhibiteurs non compétitifs de l’ATP ciblant la boucle d’activation de CDK5. Le biosenseur CDKCONF5 a été exploité pour réaliser un criblage haut débit de trois chimiothèques de petites molécules. Les touches identifiées ont été validées et caractérisées in vitro, pour déterminer leur potentiel inhibiteur dans des tests d’activité kinase et de prolifération cellulaire, ainsi que leur mécanisme d’action. Ces molécules constituent des candidats prometteurs pour une chimiothérapie sélective du glioblastome. / CDK5 is a protein kinase ubiquitously expressed but mainly activated in the central nervous system, where it plays an important role in neuronal functions such as synaptic transmission, axonal guidance and migration, synaptic plasticity and neuronal development. CDK5 is associated with p35 protein at the cell membrane, then activated by calpain-mediated cleavage of p35 into p25, which promotes relocalization of CDK5/p25 into the cytoplasm. CDK5/p25 phosphorylates a wide variety of substrates including Tau, thereby contributing to appearance of neurofibrillary plaques responsable for neurodegenerative pathologies such as comme Alzheimer’s et Parkinson’s, when hyperactivated. More recent studies suggest that CDK5 expression and hyperactivation are involved in glioblastoma during cell invasion and CDK5 expression has been reported to be correlated with the pathological grade of gliomas. However there are currently no tools available to monitor CDK5/p25 activity in its native cellular environment, in tissues or in tumours, due to an overall lack of reliable tools to quantify dynamic changes in its kinase activity in a sensitive and continuous fashion. Furthermore, few inhibitors are currently available to target CDK5/p25 in a specific fashion and most of them are ATP competitive inhibitors.The first goal of my thesis was to develop a fluorescent peptide biosensor named CDKACT5, that specifically reports on recombinant CDK5/p25 and on endogenous CDK5 activity in cell extracts in a dynamic and reversible fashion following stimulation or inhibition of this kinase. Once validated in vitro, this biosensor was applied to detect alterations in CDK5/p25 activity in different glioblastoma cell lines in fluorescent kinase activity assays. Finally CDKACT5 was introduced into cultured neuronal cells to monitor dynamic changes in CDK5/p25 activity by fluorescence imaging and time-lapse microscopy.The second goal of my thesis project consisted in developing a conformational fluorescent biosensor to identify non-ATP competitive inhibitors targeting the activation loop of CDK5. CDKCONF5 was implemented to perform a high throughput screen of three small molecule libraries. The hits identified were validated and characterized to determine their inhibitory potential in kinase activity and proliferation assays, as well as their mechanism of action. These compounds constitute promising for selective chemotherapy in glioblastoma.
5

Développement de biosenseurs fluorescents et d’inhibiteurs pour suivre et cibler CDK4/cycline D dans le mélanome / Development of fluorescent biosensors and inhibitors to probe and target CDK4/cyclin D in melanoma

Prevel, Camille 11 December 2015 (has links)
Les CDK/cyclines jouent un rôle majeur dans la progression du cycle cellulaire et dans le maintien de la prolifération des cellules cancéreuses, constituant ainsi des biomarqueurs clés et des cibles pharmacologiques attractives. Plus particulièrement, l’activité de CDK4/cycline D, kinase responsable de la progression de la phase G1 et de la transition G1/S, est dérégulée dans de nombreux cancers dont le mélanome. Cette hyperactivation est associée à des mutations, à l’amplification ou à la surexpression de CDK4, cycline D, p16INK4a ou encore pRb.Comme aucune approche sensible et directe n’existe pour évaluer l’activité de CDK4/cycline D dans des conditions physiologiques et pathologiques, le premier objectif de ma thèse a consisté à développer un biosenseur fluorescent permettant d’étudier cette kinase in vitro et in cellulo. Une fois caractérisé et validé in vitro, le biosenseur a été appliqué à la détection d’altérations de CDK4/cycline D dans des biopsies de peau humaine et de xénogreffes de mélanome dans des essais fluorescents d’activité kinase, ainsi que dans des cellules cancéreuses vivantes par microscopie de fluorescence et vidéo microscopie.Par ailleurs, peu d’inhibiteurs sont actuellement disponibles pour inhiber CDK4/cycline D et la plupart d’entre eux ciblent la poche de fixation de l’ATP. C’est pourquoi le second objectif de ma thèse a consisté à identifier des inhibiteurs non compétitifs de l’ATP, soit par élaboration rationnelle de peptides, soit par criblage de petites molécules. A cette fin, deux biosenseurs fluorescents ont été développés qui permettent d’identifier respectivement des composés ciblant l’interface entre CDK4 et cycline D ou des inhibiteurs allostériques capables de perturber la dynamique conformationnelle de CDK4. Des essais de criblage par fluorescence réalisés avec ces biosenseurs ont conduit à l’identification de touches qui ont été validées et caractérisées in vitro et dans des essais de prolifération cellulaire, et qui constituent des candidats prometteurs pour une chimiothérapie sélective du mélanome. / CDK/cyclins play a central role in coordinating cell cycle progression, and in sustaining proliferation of cancer cells, thereby constituting established cancer biomarkers and attractive pharmacological targets. In particular, CDK4/cyclin D, which is responsible for coordinating cell cycle progression through G1 into S phase, is a relevant target in several cancers including melanoma, associated with mutation of CDK4, cyclin D, p16INK4a and pRb.As there are no sensitive and direct approaches to probe CDK4/cyclin D activity in physiological and pathological conditions, the first goal of my thesis has consisted in engineering a fluorescent biosensor to probe this kinase in vitro and in cellulo. Once characterized and validated in vitro, the biosensor was applied to detect CDK4/cyclin D alterations in biopsies from human skin and melanoma xenografts in fluorescence-based activity assays, and in living cancer cells by fluorescence microscopy and timelapse imaging.Moreover, only few inhibitors are currently available to target CDK4/cyclin D and most of them bind the ATP pocket. As such, the second major goal of my thesis project has consisted in identifying non-ATP competitive inhibitors, either through rational design of peptides or by screening small molecule libraries. To this aim, two fluorescent biosensors were engineered which discriminate compounds that target the interface between CDK4 and cyclin D, or that perturb the conformational dynamics of CDK4, respectively, from ATP-pocket binding compounds. Fluorescence-based screening assays performed with these biosensors lead to identification of hits, which were validated and characterized in vitro and in cell proliferation assays, and which constitute promising candidates for selective chemotherapy in melanoma.
6

ENGINEERING GENETICALLY ENCODED FLUORESCENT BIOSENSORS TO STUDY THE ROLE OF MITOCHONDRIAL DYSFUNCTION AND INFLAMMATION IN PARKINSON’S DISEASE

Stevie Norcross (6395171) 10 June 2019 (has links)
<p>Parkinson’s disease is a neurodegenerative disorder characterized by a loss of dopaminergic neurons, where mitochondrial dysfunction and neuroinflammation are implicated in this process. However, the exact mechanisms of mitochondrial dysfunction, oxidative stress and neuroinflammation leading to the onset and development of Parkinson’s disease are not well understood. There is a lack of tools necessary to dissect these mechanisms, therefore we engineered genetically encoded fluorescent biosensors to monitor redox status and an inflammatory signal peptide with high spatiotemporal resolution. To measure intracellular redox dynamics, we developed red-shifted redox sensors and demonstrated their application in dual compartment imaging to study cross compartmental redox dynamics in live cells. To monitor extracellular inflammatory events, we developed a family of spectrally diverse genetically encoded fluorescent biosensors for the inflammatory mediator peptide, bradykinin. At the organismal level, we characterized the locomotor effects of mitochondrial toxicant-induced dopaminergic disruption in a zebrafish animal model and evaluated a behavioral assay as a method to screen for dopaminergic dysfunction. Pairing our intracellular redox sensors and our extracellular bradykinin sensors in a Parkinson’s disease animal model, such as a zebrafish toxicant-induced model will prove useful for dissecting the role of mitochondrial dysfunction and inflammation in Parkinson’s disease. </p>

Page generated in 0.1251 seconds