• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluorinated Alcohols : A Perfect Medium for Direct Functionalization of Aromatics / Alcools fluorés : un milieu parfait pour la fonctionnalisation directe d'aromatiques

Tang, Renjin 03 October 2018 (has links)
Le trifluoroéthanol (TFE) et l'hexafluoroisopropanol (HFIP) présentent des propriétés physicochimiques particulières comme un fort pouvoir ionisant élevé, une forte capacité à donner des liaisons hydrogène, et une faible nucléophilie. Ces différentes propriétés ont été avantageusement exploitées dans plusieurs réactions sans la présence de catalyseur. Dans un premier temps, l'étude de l'amination électrophile sélective d'aromatiques avec les azodicarboxylates a été réalisée dans l'HFIP pour conduire à une famille d'hydrazines aromatiques. Ensuite l'alkylation de Friedel-Crafts avec des hétéroaromatiques et des β-nitroalcènes a conduit à des dérivées de tryptamines. Ensuite, l'halogénation sélective d'aromatiques et d'hétérocycles en présence de N-halosuccinimides (NIS, NBS et NCS) a été développée. Egalement, nous avons étudié un nouveau système combinant l'HFIP et le KHSO4 qui est un sel inorganique peu coûteux. L'association de l'HFIP et de KHSO4 (10 mol%) est un système catalytique doux et efficace pour promouvoir certaines réactions. En particulier nous avons montré que ce système catalytique a été appliqué avec succès pour l'amination directe d'aromatiques peu activés avec des azodicarboxylates pour conduire à d'autres dérivés hydrazines. Ce système a aussi montré son efficacité dans la réaction directe de benzylation de Friedel-Crafts avec des alcools benzyliques. Ainsi une grande variétés de composés diarylméthanes dissymétriques a pu être obtenue avec une excellente régiosélectivité. / Due to the electron-withdrawing character of fluoroalkyl groups, fluorinated alcohols such as trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) exhibit a nearly unique set of properties that include high ionizing power, strong hydrogen bond donating ability, mild acidity, and low nucleophilicity. All of these properties have been exploited without the need of an external catalyst. At first, the para-selective amination of free anilines with azodicarboxylates in HFIP led to hydrazine derivatives. The Friedel-Crafts alkylation of indoles and electron-rich arenes with β-nitroalkenes succeeded to afford tryptamines derivatives. Then the regioselective halogenation of arenes and heterocycles with N-halosuccinimides (NIS, NBS, NCS) have been developed. Meanwhile, we have disclosed a new mild system between HFIP and KHSO4 which is a green, inexpensive and readily available inorganic salt. The association of HFIP/KHSO4 (10 mol%) is an efficient and mild catalytic system in order to promote some reactions. In particular, we showed that this system allowed the direct amination of slightly activated and neutral arenes with azodicarboxylates in order to give other families of hydrazines. This mild system has been applied successfully for the Friedel-Crafts benzylation with benzylic alcohols. These mild conditions provided a straightforward synthesis of a variety of unsymmetrical diarylmethanes in high yield with good to high regioselectivity
2

Carbon dioxide and vegetable oil for the synthesis of bio-based polymer precursors / Valorisation du CO2 et d'huiles végétales pour la synthèse de monomères biosourcés

Alves, Margot 17 November 2016 (has links)
Bien que thermodynamiquement et cinétiquement stable, le dioxyde de carbone est une molécule qui peut être convertie en carbonates cycliques à cinq ou six atomes respectivement au départ d’époxydes ou d’oxétanes moyennant l’utilisation d’un catalyseur approprié. Ces carbonates cycliques sont utilisés comme solvants verts, électrolytes pour les batteries au lithium ou comme intermédiaires pour la synthèse de polymères. Cependant, les performances catalytiques doivent être améliorées en particulier pour lecouplage du CO2 avec les huiles végétales époxydées ou les oxétanes. Dans ce contexte, nous avons développé un nouveau catalyseur homogène bicomposant organique composé d’un sel d’ammonium jouant le rôle de catalyseur et d’un co-catalyseur fluoré simple ou double donneur de liaison hydrogène. Dans un premier temps, l’efficacité de ces nouveaux catalyseurs a été évaluée et optimisée pour le couplage entre un époxyde terminal et le CO2 via des études cinétiques par spectroscopie FTIR ou Raman in-situ sous pression. Ces études ont démontré que l’utilisation combinée de sels d’ammonium et d’alcools fluorés induit un effet synergique permettant la fixation rapide et sélective du CO2 sur les époxydes modèles et les huiles végétales époxydées dans des conditions douces et sans solvant. L’utilisation de cette plateforme catalytique performante a ensuite été exploitée pour la synthèse d’oligocarbonates hydroxyles téléchéliques au départ d’oxétanes nettement moins réactifs que les époxydes. Ces oligocarbonates ont finalement été valorisés pour la synthèse de polyuréthanes CO2-sourcés par extension de chaines en présence de diisocyanates. En complément de ces travaux, une compréhension fine des mécanismes réactionnels a été réalisée via calculs DFT qui ont mis en évidence que l’efficacité catalytique de ces catalyseurs était liée à la stabilisation multiple des intermédiaires et états de transition par liaisons hydrogènes. A ce jour, via une étude comparative, nous avons mis en évidence que ce système catalytique bicomposant constitue un des catalyseurs organiques les plus performants pour le couplage du CO2 et d’époxydes et le seul système organique permettant la conversion d’oxétanes en synthons d’intérêt. / Although it is a thermodynamically and kinetically stable molecule, carbon dioxide can beconverted into five- and six-membered cyclic carbonates by coupling with epoxides or oxetanes, respectively, using appropriate catalysts. Cyclic carbonates are used as green solvents, electrolytes for Liion batteries or intermediates for the synthesis of polymers. However, the catalytic performance must be further enhanced in particular for the coupling of CO2 with epoxidized vegetable oils or oxetanes. In this context, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of anammonium salt as the catalyst and fluorinated single or double hydrogen bond donors as co-catalysts. First,a screening of onium-based catalysts and hydrogen-bond donors was performed. Performances of thecatalysts and optimization of the reaction was realized through detailed kinetics studies using in-situ FTIR/Raman spectroscopy under pressure. We demonstrated that fluorinated alcohols showed unexpected co-catalytic activity due to synergisms between the onium salt and fluorinated co-catalysts enabling the fast and selective addition of CO2 on to model epoxides and epoxidized vegetable oils under solvent-free and mild experimental conditions. The use of this powerful dual catalyst was then extended to the first organocatalytic coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates that were used asprecursor of CO2-based polyurethanes by chain-extension with a diisocyanate. In addition, a fine comprehension of the mechanisms was investigated by DFT calculations highlighting that the co-catalytic performance of the onium salt/fluorinated alcohol binary catalyst arose from the strong stabilization of the intermediates and transitions states by hydrogen-bonding. To date, through comparative studies, we evidenced that this new catalyst is one

Page generated in 0.0472 seconds