• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical characterization of samarium-doped fluorophosphate glass for x-ray dosimetry for microbeam radiation therapy at the Canadian Light Source

2012 June 1900 (has links)
Microbeam Radiation Therapy (MRT) is an experimental form of radiation treatment which has the potential to improve the treatment of many types of cancer. In MRT, the radiation is applied as a grid by passing the collimated X-ray beam from a synchrotron through a microplane collimator, which is a stack of parallel plates of two materials with dramatically different X-ray transparencies. The peak-to-valley dose ratio (PVDR) is the difference between the dose in the microbeams and the dose delivered between the beams. It is the PVDR that is of biological importance in MRT. Therefore a dosimeter for MRT requires a combination of a large dynamic range for dose response into the kilo-Gray regime, and high spatial resolution on the micron scale. This project characterizes fluorophosphate glasses doped with trivalent samarium ions as a potential valency conversion dosimeter for MRT using the conversion of Sm3+→Sm2+ to measure the delivered dose. Samples irradiated at the Canadian Light Source synchrotron showed X-ray induced conversion that could be optically characterized by changes in the photoluminescence emission spectra to obtain irradiation dose. The conversion efficiency depends almost linearly on the irradiation dose up to 150 Gy and saturates at doses exceeding 1500 Gy. The conversion shows a strong correlation with an observed increase in absorbance of the glass in the range of 200-750 nm. The absorbance increases with X-ray dose and is related to the formation of phosphorous-oxygen hole centers (POHC) and POn electron centers. The presence of these defects within the irradiated glass was determined by examination of the induced optical absorbance and electron paramagnetic resonance (EPR) spectra. The formation of these hole centers along with the conversion of Sm3+→Sm2+ under X-ray irradiation suggests that the X-rays cause the formation of electron-hole pairs in the glass. The electrons are then primarily captured by the Sm3+ ions, becoming Sm2+ ions, with some of the electrons being captured by POn electron centers. The holes are captured by the POHCs. This process can be represented chemically as Sm3+ + e-→ Sm2+ and PO + h+→POHC. The stability of the Sm conversion under illumination was examined using photoluminescence spectra and the stability of the X-ray induced defects was examined via the induced optical absorbance and EPR spectra.
2

Optical and thermal properties of samarium-doped fluorophosphate and fluoroaluminate glasses for high-dose, high-resolution dosimetry applications

2014 October 1900 (has links)
Microbeam radiation therapy (MRT) is an experimental form of radiation treatment which causes less damage to normal tissue in comparison with customary broad-beam radiation treatment. In this method the synchrotron generated X-ray beam is passed through a multislit collimator and applied to the tumor in the form of an array of planar microbeams. MRT dosimetry is an extremely challenging task and no current detector can provide the required wide dynamic rang and high spatial resolution. In this thesis, fluorophosphate (FP) and fluoroaluminate (FA) glass plates doped with trivalent samarium (Sm3+) are characterized towards developing a potential X-ray detector suitable for MRT dosimetry. The detection is based on the difference in the photoluminescence signatures of Sm3+ ions and Sm2+ ions; the latter are formed under X-ray irradiation. This valency conversion is accompanied by the formation of defects including hole centers (HCs) and electron centers (ECs) in the glass structure which absorb light in the UV and visible regions (induced absorbance). Both FP and FA glasses show promising dynamic range for MRT and may be used as a linear sensor up to ~150 Gy and as a nonlinear sensor up to ∼2400 Gy, where saturation is reached. X-ray induced defects saturate at the same dose. The optimum doping concentration is in the 0.001˗ 0.2 at.% range. Doping with higher concentrations will decrease the conversion efficiency. The glass plates also show a very promising spatial resolution (as high as a few microns) for recording the dose profile of microbeams which is readout using a confocal fluorescence microscopy technique. These plates are restorable as well and the response is reproducible. The effects of previous X-ray exposure including samarium valency conversion as well as induced absorbance may be erased by annealing at temperatures exceeding the glass transition temperature Tg while annealing at TA < Tg enhances the response. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding X-ray induced Sm2+ ions. Optical erasure is another practical means to erase the recorded data. Nearly complete Sm2+ to Sm3+ reconversion (erasure) is achieved by intense optical illumination at 405 nm. While, existing X-ray induced bands would be only partially erased. Electron spin resonance (ESR) and optical absorbance spectroscopy are used to investigate the nature of X-ray induced defects and their correlation with Sm valency conversion. A model based on competition between defect center formation and the Sm3+ ⇆ Sm2+ conversion successfully explains the different processes occurring in the glass matrix under X-ray irradiation.

Page generated in 0.0801 seconds