• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a finite element matrix (fem)three-phase three-limb transformer model for Geomagnetically Induced Currents (GIC) experiments

Mkhonta, Sizwe 10 February 2021 (has links)
Geomagnetically Induced Currents (GIC) have been a growing concern within power system operators and researchers as they have been widely reported to lead to power system related issues and material damage to system components like power transformers. In power transformers, GIC impacts are evidenced by part-wave saturation, resulting in transformers experiencing increased presence of odd and even harmonics. The three-phase three-limb (3p3L) transformer has been found to be the most tolerant to high dc values compared to other core types. The research was based on a hypothesis which reads “transformer laboratory testing results can be used as a guide towards developing suitable Finite Element Matrix (FEM) models to be used for conducting GIC/DC experiments”. This study thus investigates the response of a 15 kVA 3p3L laboratory transformer to dc current, emulating the effects of GICs. GIC and dc current are the same under steady state conditions, and hence mentioned interchangeably. Laboratory tests conducted identified two critical saturation points when the transformer is exposed to dc. The early saturation point was identified to be at around 1.8 A/phase of dc (18% of rated current), while the deep saturation point was at around 15 to 20 A/phase of dc (about 72% of rated current). Further analysis showed that holes drilled on the transformer can lower the transformer knee-point by about 26%, depending on the size and location of the holes. The holes hence end up affecting the operating point of the transformer due to losses occurring around the holes. A transformer FEM model was developed following the laboratory exercise, where it was concluded that a 2D model leads to grossly erroneous results, distorting the magnetizing current by about 60% compared to the laboratory results. A solid 3D model improved performance by about 30% as it took the transformer's topological structure into consideration. The 3D model was then refined further to include joints and laminations. It was discovered that laminations on the transformer need to be introduced as stacks of the core, with each core step split into two, allocating a 4% air gap space between stacks. Refinement of the T-joints proved that the joints have a relatively high influence on the transformer behaviour, with their detailed refinement improving the transformer behaviour by about 60%. The final FEM model was used for dc experiments. The results of such experiments showed close resemblance to the laboratory results, with saturation points identified in FEM lying within 10% of the laboratory identified saturation points. Overall, the various investigation methods explored showed that the hypothesis was satisfactorily proven true. Laboratory results functioned as a guide in developing the model, offering a reference case.
2

Analysis of a radial flux-air-cored permanent magnet machine with a double-sided rotor and non overlapping windings

Randewijk, Peter-Jan 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: In this dissertation a new type of electrical machine, a Radial Flux Air-Cored Permanent Magnet machine with a Double-sided Rotor and utilising concentrated, non-overlapping windings, is proposed. The concept of the Double-sided Rotor Radial Flux Air-Cored Permanent Magnet machine, or RFAPM machine for short, was derived from the Double-sided Rotor Axial Flux Air-Cored Permanent Magnet (AFAPM) machine. One of the problems that AFAPM machines experience, is the deflection of the rotor discs due to the strong magnetic pull of the permanent magnets, especially with double-sided rotor machines. The main advantage of a RFAPM machine over a AFAPM machine is that the rotor back-iron is cylindrically shaped instead of disk shaped. Due to the structural integrity of a cylinder, the attraction force between the two rotors does not come into play any more. The focus of this dissertation is on a thorough analytical analysis of the Double-Sided Rotor RFAPM machine. With the RFAPM being an air-cored machine, the feasibility to develop a linear, analytical model, to accurately predict the radial flux-density and hence the induced EMF in the stator windings, as well as the accurate calculation of the developed torque of the machine, needed to be investigated. The need for a thorough analytical examination of the Double-Sided Rotor RFAPM machine stemmed from the need to reduce the blind reliance on Finite Element Modelling (FEM) software to calculate the back-EMF and torque produced by these machines. Another problem experienced with the FEM software was to obtain accurate torque results. Excessive ripple torque oscillations were sometimes experienced which took a considerable amount of time to minimise with constant refinement to the meshing of the machine parts. Reduction in the mesh element size unfortunately also added to the simulation time. The requirement for an accurate analytical model of the RFAPM machine was also necessary in order to reduce the amount of time spent on successive FEM simulation to obtain the optimum pole arc width of the permanent magnet in order to minimise the harmonic content of the radial flux-density distribution in the the stator windings. In this dissertation, the use of single-layer and double-layer, non-overlapping, concentrated winding for the RFAPM machine is also investigated. It was decided to include a comparison of these two non-overlapping winding configurations with a “hypothetical” concentrated, overlapping winding configuration. This would allow us to gauge the effectiveness of using nonoverlapping winding with respect to the reduction in copper losses as well as in the reduction in copper volume. It would also allow us to investigate the extent of how much the developed torque is affected by using non-overlapping windings instead of overlapping windings. / AFRIKAANSE OPSOMMING: In hierdie proefskrif word ’n nuwe tipe elektriese masjien, ’n Radiale-vloed Lugkern Permanent Magneet Masjien met ’n dubbelkantige rotor en nie-oorvleuelende Windings voorgestel. Die konsep vir die Radiale-vloed Lugkern Permanent Magneet Masjien, of RVLPM vir kort, is afgelei vanaf die Dubbelkantige Rotor, Aksiale-vloed Lugkern (AVLPM) masjien. Een van die probleme wat met AVLPM masjiene ondervind word, is die defleksie van die rotorjukke as gevolg van die sterk aantrekkingskragte van die permanente magnete, veral in dubbelkantige rotor masjiene. Die hoof voordeel wat die RVLPM masjien inhou bo die AVLPM masjien, is die feit dat die RVLPM se rotorjukke silindries is in plaas van ronde skywe. As gevolg van die strukturele integriteit van ’n silinders, speel die aantrekkingskrag van die permanente magnete nie meer ’n rol nie. Die fokus van die proefskrif gaan oor die deeglike analitiese analise van die dubbelkantige RVLPM masjien. Weens die feit dat die RVLPM masjien ’n lugkern masjien is, is daar besluit om ondersoek in te stel na die moontlikheid om ’n lineêre, analitiese model vir die masjien op te stel waarmee die radiale-vloeddigtheid, teen-EMK asook die ontwikkelde draaimoment vir die masjien akkuraat bereken kan word. Die behoefde aan ’n akkurate analitiese model vir die dubbelkantige rotor RVLPM masjien is om die blinde vertroue te elimineer wat daar in Eindige-Element Modellering (EEM) sagteware gestel word om die teen-EMK en ontwikkelde draaimoment van die RVLPM masjien uit te werk. ’n Verdere probleem wat daar met EEM sagteware ondervind is, is die akkurate berekening van die ontwikkelde draaimoment. Oormatige rimpel draaimoment ossillasies is soms ondervind wat heelwat tyd geverg het om te minimeer, deur voortdurende verfyning van die EEM maas in die verskillende dele van die masjien. Soos die maas egter kleiner word, verleng dit die simulasie tyd van die EEM aansienlik. Nog ’n rede vir ’n akkurate analitiese model van die RVLPM masjien, is om vinnige metode te verkry om die optimale permanente magneet pool hoekwydte te verkry, wat die minste Totale Harmoniese Vervorming (THV) in die radiale-vloeddigtheidsdistribusie in die statorgebied sal veroorsaak, sonder om herhaaldelike EEM simulasies te loop. In die proefskrif word die gebruik van enkellaag en dubbellaag, nie- oorvleuelende, gekonsentreerde wikkelings vir die RVLPM masjien ook ondersoek. Daar is besluit om hierdie twee nie-oorvleuelende windingskonfigurasies met ’n “hipotetiese” gekonsentreerde, oorvleuelende windingskonfigurasie te vergelyk. Dit behoort ons in staat te stel om die doeltreffendheid van nie-oorvleuelende windings te bepaal, met betrekking tot die afname in koperverliese asook die afname in kopervolume. Verder sal dit ons in staat stel om ook mate waartoe die ontwikkelde draaimoment deur nie-oorvleuelende windings beïnvloed word, te ondersoek.

Page generated in 0.1189 seconds