• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 71
  • 61
  • 39
  • 10
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 525
  • 525
  • 114
  • 99
  • 83
  • 74
  • 63
  • 61
  • 56
  • 56
  • 45
  • 44
  • 43
  • 37
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Chemistry and speciation of potentially toxic and radioactive elements during mine water treatment

Madzivire, Godfrey January 2012 (has links)
Philosophiae Doctor - PhD / Mine water poses a serious environmental challenge and contains elements such as Fe, Al, and Mn in potentially toxic concentrations. The major anion in mine water is sulphate. The complexity and diversity of mine water composition makes its treatment very expensive, and there is no “one-fits-all” treatment option available for mine water. Active treatment of mine water produces water with good quality but the processes are not sustainable because of the costs. Previous studies have shown that acid mine drainage can be treated with coal FA to produce better quality water. The use of coal FA, a waste material from coal fired power station and mine water would go a long way in achievement of sustainable treatment of mine water as per previous studies. In this study mine water and coal FA were characterized to determine their physiochemical properties. This study linked the modelling results obtained by using the Geochemist’s workbench (GWB) software to the results obtained during the actual treatment of Matla mine water and Rand Uranium mine water using coal FA and lime. The chemistry involved when Matla mine water and Rand Uranium mine water were treated with flocculants was also investigated. Lastly the chemistry and kinetics involved was investigated when mine water was treated with various ameliorants such as Matla coal FA, lime and/or Al(OH)3 using jet loop mixing or overhead stirring. Mine water from Matla coal mine had a pH of 8 and therefore was classified as neutral mine drainage (NMD). Rand Uranium mine water had a pH of less than 3 and therefore was classified as acid mine drainage (AMD). The concentration of sulphate, Na, Ca, Mg, B, Hg, Se and Cd ions in Matla mine water was 1475, 956, 70, 40, 15, 2.43, 1.12 and 0.005 mg/L respectively. The concentration of sulphate, Fe, Ca, Mn, Mg, Al, B, Cr, Pb, U, Cd, Se and As ions in Rand Uranium mine water was 4126, 896, 376, 282, 155, 27, 5.43, 3.15, 0.51, 0.29, 0.007, 0.06 and 0.006 mg/L respectively . These concentrations were above the target water quality range (TWQR) for potable water set by the Department of Water Affairs (DWA) and World Health Organization (WHO). The gross alpha radioactivity was 6.01 Bq/L and gross beta radioactivity was 6.05 Bq/L in Rand Uranium mine water.
122

Synthesis of ZSM-5 zeolite from South African fly ash and its application as solid catalyst

Missengue-Na-Moutoula, Roland January 2016 (has links)
Philosophiae Doctor - PhD / Zeolites are widely used as environmentally friendly solid catalysts or catalyst supports in the refining and petrochemical industries. ZSM-5 zeolite is composed of a three-dimensional medium pore structure (openings of 5-5.5 Å) with high silica content, high temperature stability and strong acidity making it a well-known and an established catalyst for several petroleum derived chemical processes such as cracking, aromatic alkylation, disproportionation, Methanol-to-Gasoline, isomerisation, etc. Nowadays, the synthesis of ZSM-5 zeolite from silica, alumina sources and structure directing agents (templates) is well known. Its synthesis is possible from fly ash, which is a low cost source of both silica and alumina. Fly ash is an inorganic residue resulting from the combustion of coal in electricity generating plants, consisting mostly of SiO₂ and Al₂O₃. ZSM-5 zeolite has not been synthesised from South African coal fly ash and the literature reports that fly ash-based ZSM-5 zeolite was synthesised only with tetrapropylammonium (TPA+) as structure directing agent and required an excessive amount of additional silica. The final ZSM-5 product was reported to still contain fly ash mineral phases after synthesis. This prevents the use of fly ash as a ZSM-5 zeolite precursor. Moreover, the synthesis of a high purity ZSM-5 zeolite from fly ash without additional silica has not been yet reported. This study aimed to synthesise high purity ZSM-5 zeolite from South African coal fly ash without additional silica, and with tetrapropylammonium bromide (TPABr), 1,6- hexanediamine (HDA) or 1-propylamine (PA) as structure directing agent. This aim was achieved by first optimising the synthesis of ZSM-5 zeolite from South African coal fly ash based on a formulation reported in the literature with fumed silica and TPABr as additional source of silica and structure directing agent respectively. Thereafter, the obtained optimum conditions were used to synthesise other fly ash-based ZSM-5 zeolite products by substituting TPABr with HDA or PA. Two routes of treating the as-received fly ash prior to the hydrothermal synthesis were applied in order to improve the quality of the final products or reduce the amount of the fumed silica that was used. The first route consisted of treating the as-received fly ash with concentrated H₂SO₄ in order to remove a certain amount of aluminium and increase the Si/Al in the acid treated fly ash solid residue but also remove some other elements such as Fe, Ca, Mg, and Ti which might have an undesirable effect on the product quality. The acid treated fly ash solid residue was used as ZSM-5 precursor with fumed silica as additional silica source and TPABr, HDA or PA as structure directing agent. The ZSM-5 zeolite products that were synthesised from the as-received fly ash as well as from the H₂SO₄ treated fly ash were treated with oxalic acid solution in order to reduce the aluminium content in the final products. The second route consisted of fusing the as-received fly ash with NaOH and treating the powder fused fly ash extract with oxalic acid solution. The obtained fused and oxalic acid treated fly ash extracts were used as ZSM-5 precursors without additional fumed silica and with TPABr, HDA or PA as structure directing agent. ZSM-5 zeolite was synthesised from the as-received South African coal fly ash not only with the commonly used structure directing agent TPABr but also with two other, lower cost structure directing agents, HDA and PA. The synthesis process did not generate any solid waste as fly ash was used as bulk, which could be a way of valorising South African coal fly ash. However, the final products contained some fly ash mineral phases such as mullite and quartz, and had poor physical and chemical properties compared to a commercial H-ZSM-5 zeolite. The treatment of the as-received fly ash with H₂SO4 resulted in fly ash-based ZSM-5 zeolite products with better physical and chemical properties than those of ZSM-5 zeolite products that were synthesised from the as-received fly ash. Moreover, the post-synthesis treatment of the fly ash-based ZSM-5 zeolite products with oxalic acid resulted in an increase in the Si/Al ratio, offering a post-synthesis route to adjust the acidity of the catalysts. However, mullite and quartz phases were still present in the synthesised products. Alternatively, high purity ZSM-5 zeolite was synthesised from the fused and oxalic treated fly ash extracts without additional silica and with TPABr, HDA or PA as structure directing agent. Moreover, these synthesised fly ash-based ZSM-5 zeolite products had similar physical and chemical properties to the commercial H-ZSM-5 zeolite. The synthesised fly ash-based ZSM-5 zeolite products were used as solid catalysts in the Methanol-to-Olefins (MTO) and Nazarov reactions. The ZSM-5 zeolite products that were synthesised from the H₂SO4 treated fly ash as well as fused and oxalic treated fly ash were successfully used as solid catalysts in the MTO and Nazarov reactions. The ZSM-5 zeolite products that were synthesised from the H₂SO₄ treated fly ash presented a similar trend in MTO and Nazarov reactions depending on the structure directing agent that was used, and the ZSM-5 zeolite that was synthesised with HDA as structure directing agent had the highest MTO and Nazarov conversion. However these catalysts deactivated more quickly compared to the commercial H-ZSM-5 zeolite. On the other hand, the zeolites that were synthesised from the fused and oxalic acid treated fly ash had a high initial MTO conversion equivalent to the commercial H-ZSM-5 zeolite. However, they deactivated after 5 h of time on stream due to diffusional constraints, because of their large crystal sizes. This study developed novel routes in the synthesis of high value zeolites from fly ash. ZSM-5 zeolite was synthesised from fly ash with structure directing agents other that TPA+ cation and had acceptable Brønsted acidity and high initial conversion in MTO and Nazarov reactions. This has not been yet reported in the literature. Moreover, for the first time a high purity ZSM-5 zeolite was synthesised from fly ash without additional silica and had similar properties to a commercial H-ZSM-5 zeolite. This constituted a breakthrough in the fly ash-based ZSM-5 zeolite synthesis procedure, which will promote the valorisation of fly ash through ZSM-5 synthesis due to avoiding the addition of silica source in the hydrothermal gel and preventing the presence of fly ash mineral phases in the final products. This study can have a significant economic and environmental impact in South Africa if the synthesis process is scaled up as it provides a potentially cheap and innovative way of using waste for making a high value green and acid catalyst, namely ZSM-5 zeolite that has several catalytic applications; and it promotes the valorisation of South African coal fly ash that is considered by many as waste material. / National Research Foundation (NRF)
123

Popílky jako surovinová základna budoucnosti / Ash – the raw material base for the future

Marko, Michal January 2018 (has links)
This master’s thesis responds to the worldwide problem concerning in the search of new material base for the future usage. Solid residues from high temperature or fluid coal combustion could be one of many alternatives to the raw materials. The study deals with the analysis of side energy products produced by power plant industry in the Czech Republic. Based on the fly ash chemical composition, possibilities of aluminium and even iron and titanium separation were proposed and then proved in the laboratory scale. Extracted components were separated selectively using apropriate methods. Then a couple of sintering reactions leading to improvement the leachability of selected elements from the fly ash matrix were carried out. Appropriate input material modification by high-temperature sintering reaction combined with extraction process in the sulfuric acid solution leads in dissolution up to 99 % of aluminium from the fluid and high-temperature fly ash.
124

Effects of Nano Silica and Basalt Fibers on Fly Ash Based Geopolymer Concrete

Abu Bakar, Asif January 2018 (has links)
Emission of carbon dioxide gas has been a source of major concern for the construction industry. To curb this emission, geopolymer concrete has been deemed as a potential alternative in the recent studies. Previous research also indicates that silica and fibers provide strength benefits to ordinary Portland cement concrete OPC. This study was undertaken to recognize the benefits of adding silica and basalt fibers in Class F fly ash based geopolymer concrete and comparing it with OPC concrete. One OPC and four Geopolymer mixtures were prepared. The results show a tremendous potential of using geopolymer concrete in place of OPC concrete with Nano silica proving to be the most advantageous. Nano silica provided 28% increase in compressive strength, 8% increase in resistivity when compared with normal Fly ash based geopolymer concrete. The SEM analysis of geopolymer concrete indicates that nano silica improved the compactness of concrete providing a dense microstructure.
125

Portland Limestone Cement with Fly Ash: Freeze-Thaw Durability and Microstructure Studies

Angadi, Prokshit January 2018 (has links)
In this study, the freeze-thaw performance and other engineering properties of different cementitious mixtures containing Type I/II portland cement, Type IL (10) portland Limestone cement (PLC) and Coarse Ground cement (CG-P) with or without partial replacement of fly ash (Class F) were examined. The goal was to develop a concrete mixture with better or similar freeze-thaw durability without adversely affecting other engineering properties of concrete. Crucial engineering properties reviewed include compressive strength, splitting tensile strength, workability, the degree of hydration, setting time, shrinkage and resistivity. The study was divided into two parts, one consisting of mechanical testing of engineering properties including the freeze-thaw test. The second part consisted of microstructure study which involved detection and quantification of micro-cracks/defects using μ-CT and fluorescence microscopy. The results showed that the portland limestone cement in combination with fly ash demonstrated better or similar durability in comparison to the conventional portland cement concrete mixtures.
126

SORPTIVITY, RESISTIVITY AND POROSITY OF CONCRETE CONTAINING SUPPLEMENTARY CEMENTITIOUS MATERIALS

Unknown Date (has links)
Supplementary cementitious materials (SCMs), are beneficial when used as partial replacement of cement in concrete mixtures for coastal concrete structures, blended with Portland cement (binary or ternary mixes), i.e., high-performance concrete provides improved properties when exposed to marine harsh environment. In order to characterize selected durability properties of different concrete mixtures, a testing program was established. The intent of this study consists of testing 10cm diameter x 20cm long concrete specimens prepared with a range of different mix designs. 1) to evaluate the rate of water absorption due to capillary suction, referred to as sorptivity, 2) to evaluate the concrete surface resistivity, 3) to evaluate and compare the total porosity of specimens with different mixes, and 4) to obtain correlations between resistivity and sorptivity. All of these experimental tests were carried out according to ASTM International Standards (Sorptivity, Porosity) and Florida Method of Test (Resistivity). The tests were performed on concrete samples at various ages. Moreover, The results provided a fast and reasonable approximation of the concrete durability over time. Ordinary portland cement was partially replaced with supplementary cementitious materials including: fly ash (20%), silica fume (8%) and blast furnace slag (50%). These SCMs are highly effective in creating more durable concrete design mixtures. The water-to-cementitious (w/cm) ratios of 0.41 and 0.35 were investigated. The concrete that contains pozzolanic materials has demonstrated progress in extending the time for initiation of corrosion. The test results obtained indicate that the concurrent inclusion of fly ash and silica fume greatly reduced water penetration. The mixes containing slag also showed lower porosity and water absorption result, when compared to specimens containing fly ash only. Ternary concrete mixtures specimens showed much higher surface resistivity values than binary mixture specimens. These results suggest that reducing w/cm ratio, adding SCMs to concrete mixtures improved the concrete durability. The possibilities for the risks of corrosion initiation would be minimized (delayed) by prescriptive and then performance-based concrete blends with SCM materials optimized for service exposure in aggressive environments. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
127

The influence of PFA particle size on the workability of cementitious pastes

Pretorius, Jan Hendrik Christoffel 08 July 2005 (has links)
In this dissertation the effects of different types of Pulverized Fuel Ash (PF A)-types on the workability of cementitious pastes containing relative large amounts of PF A were investigated. The different types of PF A were produced at the same source thus they were chemically similar but differed in terms of average particle size and size distribution (grading). By using a two-point measurement technique based on flow through a J-shaped tube it was possible to detect relative small differences in workability between pastes. It was found and concluded that the different types of PFA had a significant effect on the workability of pastes containing cement and PFA as well as PF A alone. The physical differences between the PF A-types were quantified and their effects on workability investigated. It was concluded that PF A with a broader particle size distribution range produced pastes with higher workability at constant water content. It was found that compressive strength as measured after 28 days were solely a function of the water/cementitious ratio for the curing regime employed. It was concluded that for curing conditions used the type of PF A used could have a significant effect on compressive strength when constant workability is required. / Dissertation (MSc (Transportation))--University of Pretoria, 2006. / Civil Engineering / unrestricted
128

Effects of acid concentration on the extraction of rare earth elements from South African Coal Fly Ash

Mokoena, Kamohelo January 2021 (has links)
>Magister Scientiae - MSc / Coal is seen as a reliable and secure energy source in many countries around the world despite the development of a number of alternative sources of energy. A rise in global energy demand has led to an increase in coal consumption. Consequently, global coal fly ash (CFA) production has increased creating a pressing need for recycling and utilisation of coal fly ash. South Africa produces 50 million tons of ash per year from coal combustion with only about 10 % being utilised. There has been a rise in demand for REEs over the past decades due to their use in optics, automotive, electronics, energy, defence industries etc. These precious elements are known to be contained in CFA, making it a potential source.
129

The effect of particle size separation on the enrichment and recovery of rare earth elements from South African coal fly ash

Seleka, Bongiwe Vinita January 2021 (has links)
>Magister Scientiae - MSc / There has been increasing interest in finding alternative sources for Rare Earth Elements (REEs) due to their application in green energy and Coal Fly Ash (CFA) has been found to be a viable potential source. Thus investigations on the feasibility of recovering REEs from CFA and the possibility of optimizing the current recovery techniques have become popular. The main focus in the investigations has been to use equipment and products that are environmentally sustainable and economically efficient. In addition, studies have shown that there is a relationship between the particle size of CFA and the REE concentration, which can potentially increase the recovery of REEs. However, there have been inconsistencies in the findings of this relationship.
130

In situ infrared study on interfacial electrochemistry in energy storage devices

Liu, Cheng January 2020 (has links)
No description available.

Page generated in 0.14 seconds