• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Empirical Study of the Effects of Context-Switch, Object Distance, and Focus Depth on Human Performance in Augmented Reality

Gupta, Divya 21 June 2004 (has links)
Augmented reality provides its user with additional information not available through the natural real-world environment. This additional information displayed to the user potentially poses a risk of perceptual and cognitive load and vision-based difficulties. The presence of real-world objects together with virtual augmenting information requires the user to repeatedly switch eye focus between the two in order to extract information from both environments. Switching eye focus may result in additional time on user tasks and lower task accuracy. Thus, one of the goals of this research was to understand the impact of switching eye focus between real-world and virtual information on user task performance. Secondly, focus depth, which is an important parameter and a depth cue, may affect the user's view of the augmented world. If focus depth is not adjusted properly, it may result in vision-based difficulties and reduce speed, accuracy, and comfort while using an augmented reality display. Thus, the second goal of this thesis was to study the effect of focus depth on task performance in augmented reality systems. In augmented reality environments, real-world and virtual information are found at different distances from the user. To focus at different depths, the user's eye needs to accommodate and converge, which may strain the eye and degrade performance on tasks. However, no research in augmented reality has explored this issue. Hence, the third goal of this thesis was to determine if distance of virtual information from the user impacts task performance. To accomplish these goals, a 3x3x3 within subjects design was used. The experimental task for the study required the user to repeatedly switch eye focus between the virtual text and real-world text. A monocular see-through head- mounted display was used for this research. Results of this study revealed that switching between real-world and virtual information in augmented reality is extremely difficult when information is displayed at optical infinity. Virtual information displayed at optical infinity may be unsuitable for tasks of the nature used in this research. There was no impact of focus depth on user task performance and hence it is preliminarily recommended that manufacturers of head-mounted displays may only need to make fixed focus depth displays; this clearly merits additional intensive research. Further, user task performance was better when focus depth, virtual information, and real-world information were all at the same distance from the user as compared to conditions when they were mismatched. Based on this result we recommend presenting virtual information at the same distance as real-world information of interest. / Master of Science
2

Design and analysis of a phase mask to improve the misfocus blur

Chuang, Bo-Jin 13 September 2012 (has links)
In optical imaging system, misfocus occurs because of a nonaccuate focal length. In recent years, the improvement for misfocus problem has caught much attention in researches. This thesis is aimed to explore the misfocus improvement and analysis. Lens plays an important role in optical image system. It can focus light at one point. The distance between the focal point and the lens is called focal length. Focal length is determined by the object distance and the image distance. As light is focused farther out of the focal point, the image will blur. It is called misfocus. The general method to improve misfocus image is done by post-processing. In 1995, wave-front coding was first proposed by Dowski and Cathey. They placed the phase mask in front of the lens, and then emphasized on the processing. In recent years, more and more researches work on this field. In this thesis, a one ring phase mask is designed by modulating the phase difference in the ring to make the improvement better. Research before wave-front coding in order to achieve a closed optical transfer function for different degrees of misfocus, but we hope the phase mask can provide immediate improvement. This idea can be applied to real-time video monitoring.
3

Layered Sensing Using Master-Slave Cameras

McLemore, Donald Rodney, Jr. 01 October 2009 (has links)
No description available.
4

Měření parametrů optických čoček / Measurement of optical lenses parameters

Wintr, Aleš January 2011 (has links)
This paper contains a basic overview and description of optical lenses. It introduces different types of optical lenses and shows how they influence the passing of light beams. It deals with the production of optical lenses and their practical use. It describes types of optical blemishes that exist in real optical systems. Particular attention is given to parameters of optical lenses and their measurement in practice. It includes a Matlab program to calculate parameters of optical lenses derived from the measurements.
5

Rychlá re-kalibrace PTZ kamery pro analýzu dopravy / Fast Re-Calibration of PTZ Camera for Traffic Analysis

Dřevo, Aleš January 2016 (has links)
This thesis deals with problematics of PTZ-camera re-calibration during movement. The objective of this work is to keep the camera in calibration mode from default status when the known positions of Vanishing Points are in the image. With their use during movement, which is changing with motion of the camera, their positions are kept with help of two implemented methods. The first method is based on the principle of homography, the second on the principle of cross ratio. The results show that both of these methods work especially for keeping the positions of First Vanishing Points. In the case of the Second Vanishing Points there appear various problems and the results are often quite inaccurate.

Page generated in 0.0434 seconds