• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the application of focused crawling for statistical machine translation domain adaptation

Laranjeira, Bruno Rezende January 2015 (has links)
O treinamento de sistemas de Tradução de Máquina baseada em Estatística (TME) é bastante dependente da disponibilidade de corpora paralelos. Entretanto, este tipo de recurso costuma ser difícil de ser encontrado, especialmente quando lida com idiomas com poucos recursos ou com tópicos muito específicos, como, por exemplo, dermatologia. Para contornar esta situação, uma possibilidade é utilizar corpora comparáveis, que são recursos muito mais abundantes. Um modo de adquirir corpora comparáveis é a aplicação de algoritmos de Coleta Focada (CF). Neste trabalho, são propostas novas abordagens para CF, algumas baseadas em n-gramas e outras no poder expressivo das expressões multipalavra. Também são avaliadas a viabilidade do uso de CF para realização de adaptação de domínio para sistemas genéricos de TME e se há alguma correlação entre a qualidade dos algoritmos de CF e dos sistemas de TME que podem ser construídos a partir dos respectivos dados coletados. Os resultados indicam que algoritmos de CF podem ser bons meios para adquirir corpora comparáveis para realizar adaptação de domínio para TME e que há uma correlação entre a qualidade dos dois processos. / Statistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
2

On the application of focused crawling for statistical machine translation domain adaptation

Laranjeira, Bruno Rezende January 2015 (has links)
O treinamento de sistemas de Tradução de Máquina baseada em Estatística (TME) é bastante dependente da disponibilidade de corpora paralelos. Entretanto, este tipo de recurso costuma ser difícil de ser encontrado, especialmente quando lida com idiomas com poucos recursos ou com tópicos muito específicos, como, por exemplo, dermatologia. Para contornar esta situação, uma possibilidade é utilizar corpora comparáveis, que são recursos muito mais abundantes. Um modo de adquirir corpora comparáveis é a aplicação de algoritmos de Coleta Focada (CF). Neste trabalho, são propostas novas abordagens para CF, algumas baseadas em n-gramas e outras no poder expressivo das expressões multipalavra. Também são avaliadas a viabilidade do uso de CF para realização de adaptação de domínio para sistemas genéricos de TME e se há alguma correlação entre a qualidade dos algoritmos de CF e dos sistemas de TME que podem ser construídos a partir dos respectivos dados coletados. Os resultados indicam que algoritmos de CF podem ser bons meios para adquirir corpora comparáveis para realizar adaptação de domínio para TME e que há uma correlação entre a qualidade dos dois processos. / Statistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
3

On the application of focused crawling for statistical machine translation domain adaptation

Laranjeira, Bruno Rezende January 2015 (has links)
O treinamento de sistemas de Tradução de Máquina baseada em Estatística (TME) é bastante dependente da disponibilidade de corpora paralelos. Entretanto, este tipo de recurso costuma ser difícil de ser encontrado, especialmente quando lida com idiomas com poucos recursos ou com tópicos muito específicos, como, por exemplo, dermatologia. Para contornar esta situação, uma possibilidade é utilizar corpora comparáveis, que são recursos muito mais abundantes. Um modo de adquirir corpora comparáveis é a aplicação de algoritmos de Coleta Focada (CF). Neste trabalho, são propostas novas abordagens para CF, algumas baseadas em n-gramas e outras no poder expressivo das expressões multipalavra. Também são avaliadas a viabilidade do uso de CF para realização de adaptação de domínio para sistemas genéricos de TME e se há alguma correlação entre a qualidade dos algoritmos de CF e dos sistemas de TME que podem ser construídos a partir dos respectivos dados coletados. Os resultados indicam que algoritmos de CF podem ser bons meios para adquirir corpora comparáveis para realizar adaptação de domínio para TME e que há uma correlação entre a qualidade dos dois processos. / Statistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
4

Intelligent Event Focused Crawling

Farag, Mohamed Magdy Gharib 23 September 2016 (has links)
There is need for an integrated event focused crawling system to collect Web data about key events. When an event occurs, many users try to locate the most up-to-date information about that event. Yet, there is little systematic collecting and archiving anywhere of information about events. We propose intelligent event focused crawling for automatic event tracking and archiving, as well as effective access. We extend the traditional focused (topical) crawling techniques in two directions, modeling and representing: events and webpage source importance. We developed an event model that can capture key event information (topical, spatial, and temporal). We incorporated that model into the focused crawler algorithm. For the focused crawler to leverage the event model in predicting a webpage's relevance, we developed a function that measures the similarity between two event representations, based on textual content. Although the textual content provides a rich set of features, we proposed an additional source of evidence that allows the focused crawler to better estimate the importance of a webpage by considering its website. We estimated webpage source importance by the ratio of number of relevant webpages to non-relevant webpages found during crawling a website. We combined the textual content information and source importance into a single relevance score. For the focused crawler to work well, it needs a diverse set of high quality seed URLs (URLs of relevant webpages that link to other relevant webpages). Although manual curation of seed URLs guarantees quality, it requires exhaustive manual labor. We proposed an automated approach for curating seed URLs using social media content. We leveraged the richness of social media content about events to extract URLs that can be used as seed URLs for further focused crawling. We evaluated our system through four series of experiments, using recent events: Orlando shooting, Ecuador earthquake, Panama papers, California shooting, Brussels attack, Paris attack, and Oregon shooting. In the first experiment series our proposed event model representation, used to predict webpage relevance, outperformed the topic-only approach, showing better results in precision, recall, and F1-score. In the second series, using harvest ratio to measure ability to collect relevant webpages, our event model-based focused crawler outperformed the state-of-the-art focused crawler (best-first search). The third series evaluated the effectiveness of our proposed webpage source importance for collecting more relevant webpages. The focused crawler with webpage source importance managed to collect roughly the same number of relevant webpages as the focused crawler without webpage source importance, but from a smaller set of sources. The fourth series provides guidance to archivists regarding the effectiveness of curating seed URLs from social media content (tweets) using different methods of selection. / Ph. D.
5

Contribution à la veille stratégique : DOWSER, un système de découverte de sources Web d’intérêt opérationnel / Buisness Intelligence contribution : DOWSER, Discovering of Web Sources Evaluating Relevance

Noël, Romain 17 October 2014 (has links)
L'augmentation constante du volume d'information disponible sur le Web a rendu compliquée la découverte de nouvelles sources d'intérêt sur un sujet donné. Les experts du renseignement doivent faire face à cette problématique lorsqu'ils recherchent des pages sur des sujets spécifiques et sensibles. Ces pages non populaires sont souvent mal indexées ou non indexées par les moteurs de recherche à cause de leur contenu délicat, les rendant difficile à trouver. Nos travaux, qui s'inscrivent dans ce contenu du Renseignement d'Origine Source Ouverte (ROSO), visent à aider l'expert du renseignement dans sa tâche de découverte de nouvelles sources. Notre approche s'articule autour de la modélisation du besoin opérationnel et de l'exploration ciblée du Web. La modélisation du besoin informationnel permet de guider l'exploration du web pour découvrir et fournir des sources pertinentes à l'expert. / The constant growth of the Web in recent years has made more difficult the discovery of new sources of information on a given topic. This is a prominent problem for Expert in Intelligence Analysis (EIA) who are faced with the search of pages on specific and sensitive topics. Because of their lack of popularity or because they are poorly indexed due to their sensitive content, these pages are hard to find with traditional search engine. In this article, we describe a new Web source discovery system called DOWSER. The goal of this system is to provide users with new sources of information related to their needs without considering the popularity of a page unlike classic Information Retrieval tools. The expected result is a balance between relevance and originality, in the sense that the wanted pages are not necessary popular. DOWSER in based on a user profile to focus its exploration of the Web in order to collect and index only related Web documents.
6

Collecte orientée sur le Web pour la recherche d’information spécialisée / Focused document gathering on the Web for domain-specific information retrieval

De Groc, Clément 05 June 2013 (has links)
Les moteurs de recherche verticaux, qui se concentrent sur des segments spécifiques du Web, deviennent aujourd'hui de plus en plus présents dans le paysage d'Internet. Les moteurs de recherche thématiques, notamment, peuvent obtenir de très bonnes performances en limitant le corpus indexé à un thème connu. Les ambiguïtés de la langue sont alors d'autant plus contrôlables que le domaine est bien ciblé. De plus, la connaissance des objets et de leurs propriétés rend possible le développement de techniques d'analyse spécifiques afin d'extraire des informations pertinentes.Dans le cadre de cette thèse, nous nous intéressons plus précisément à la procédure de collecte de documents thématiques à partir du Web pour alimenter un moteur de recherche thématique. La procédure de collecte peut être réalisée en s'appuyant sur un moteur de recherche généraliste existant (recherche orientée) ou en parcourant les hyperliens entre les pages Web (exploration orientée).Nous étudions tout d'abord la recherche orientée. Dans ce contexte, l'approche classique consiste à combiner des mot-clés du domaine d'intérêt, à les soumettre à un moteur de recherche et à télécharger les meilleurs résultats retournés par ce dernier.Après avoir évalué empiriquement cette approche sur 340 thèmes issus de l'OpenDirectory, nous proposons de l'améliorer en deux points. En amont du moteur de recherche, nous proposons de formuler des requêtes thématiques plus pertinentes pour le thème afin d'augmenter la précision de la collecte. Nous définissons une métrique fondée sur un graphe de cooccurrences et un algorithme de marche aléatoire, dans le but de prédire la pertinence d'une requête thématique. En aval du moteur de recherche, nous proposons de filtrer les documents téléchargés afin d'améliorer la qualité du corpus produit. Pour ce faire, nous modélisons la procédure de collecte sous la forme d'un graphe triparti et appliquons un algorithme de marche aléatoire biaisé afin d'ordonner par pertinence les documents et termes apparaissant dans ces derniers.Dans la seconde partie de cette thèse, nous nous focalisons sur l'exploration orientée du Web. Au coeur de tout robot d'exploration orientée se trouve une stratégie de crawl qui lui permet de maximiser le rapatriement de pages pertinentes pour un thème, tout en minimisant le nombre de pages visitées qui ne sont pas en rapport avec le thème. En pratique, cette stratégie définit l'ordre de visite des pages. Nous proposons d'apprendre automatiquement une fonction d'ordonnancement indépendante du thème à partir de données existantes annotées automatiquement. / Vertical search engines, which focus on a specific segment of the Web, become more and more present in the Internet landscape. Topical search engines, notably, can obtain a significant performance boost by limiting their index on a specific topic. By doing so, language ambiguities are reduced, and both the algorithms and the user interface can take advantage of domain knowledge, such as domain objects or characteristics, to satisfy user information needs.In this thesis, we tackle the first inevitable step of a all topical search engine : focused document gathering from the Web. A thorough study of the state of art leads us to consider two strategies to gather topical documents from the Web: either relying on an existing search engine index (focused search) or directly crawling the Web (focused crawling).The first part of our research has been dedicated to focused search. In this context, a standard approach consists in combining domain-specific terms into queries, submitting those queries to a search engine and down- loading top ranked documents. After empirically evaluating this approach over 340 topics, we propose to enhance it in two different ways: Upstream of the search engine, we aim at formulating more relevant queries in or- der to increase the precision of the top retrieved documents. To do so, we define a metric based on a co-occurrence graph and a random walk algorithm, which aims at predicting the topical relevance of a query. Downstream of the search engine, we filter the retrieved documents in order to improve the document collection quality. We do so by modeling our gathering process as a tripartite graph and applying a random walk with restart algorithm so as to simultaneously order by relevance the documents and terms appearing in our corpus.In the second part of this thesis, we turn to focused crawling. We describe our focused crawler implementation that was designed to scale horizontally. Then, we consider the problem of crawl frontier ordering, which is at the very heart of a focused crawler. Such ordering strategy allows the crawler to prioritize its fetches, maximizing the number of in-domain documents retrieved while minimizing the non relevant ones. We propose to apply learning to rank algorithms to efficiently order the crawl frontier, and define a method to learn a ranking function from existing crawls.
7

Learning Algorithms Using Chance-Constrained Programs

Jagarlapudi, Saketha Nath 07 1900 (has links)
This thesis explores Chance-Constrained Programming (CCP) in the context of learning. It is shown that chance-constraint approaches lead to improved algorithms for three important learning problems — classification with specified error rates, large dataset classification and Ordinal Regression (OR). Using moments of training data, the CCPs are posed as Second Order Cone Programs (SOCPs). Novel iterative algorithms for solving the resulting SOCPs are also derived. Borrowing ideas from robust optimization theory, the proposed formulations are made robust to moment estimation errors. A maximum margin classifier with specified false positive and false negative rates is derived. The key idea is to employ chance-constraints for each class which imply that the actual misclassification rates do not exceed the specified. The formulation is applied to the case of biased classification. The problems of large dataset classification and ordinal regression are addressed by deriving formulations which employ chance-constraints for clusters in training data rather than constraints for each data point. Since the number of clusters can be substantially smaller than the number of data points, the resulting formulation size and number of inequalities are very small. Hence the formulations scale well to large datasets. The scalable classification and OR formulations are extended to feature spaces and the kernelized duals turn out to be instances of SOCPs with a single cone constraint. Exploiting this speciality, fast iterative solvers which outperform generic SOCP solvers, are proposed. Compared to state-of-the-art learners, the proposed algorithms achieve a speed up as high as 10000 times, when the specialized SOCP solvers are employed. The proposed formulations involve second order moments of data and hence are susceptible to moment estimation errors. A generic way of making the formulations robust to such estimation errors is illustrated. Two novel confidence sets for moments are derived and it is shown that when either of the confidence sets are employed, the robust formulations also yield SOCPs.

Page generated in 0.0769 seconds